Ukrainian Journal of Physical Optics 

Home page

Other articles 

in this issue
Explicit representation of extended Jones matrix for oblique light propagation through a crystalline slab

Download this article

Nastishin Yu. A. and Nastyshyn S. Yu.

Abstract. We derive compact representation of an extended Jones matrix (EJM) suggested by Lien [Lien A, 1997. Liq. Cryst. 22: 171–175] for the case of oblique light incidence. Our representation of the EJM is handy for analytical calculations and has the form of a general Jones matrix, with nonzero imaginary parts of its off-diagonal elements. An analogy between these two matrices is discussed. For a crystal slab with the optic axis along the slab normal, our representation of the EJM reduces to a form that yields the Jones vector identical to that obtained by the other authors in the frame of paraxial approximation.

Keywords: Jones matrix formalism, extended Jones matrix, oblique light incidence, linear birefringence, Jones birefringence

PACS: 42.25.Bs, 42.25.Ja, 42.25.Lc, 78.20.Bh
UDC: 535.3, 535.5
Ukr. J. Phys. Opt. 12 191-201
doi: 10.3116/16091833/12/4/191/2011
Received:  03.11.2011

Анотація. Отримано компактне представлення узагальненої матриці Джонса (УМД), запропонованої Ліеном [Lien A, 1997. Liq. Cryst., 22, 2: 171 – 175] для похилого падіння світла. Наше представлення УМД є зручним для аналітичних обчислень та має форму загальної матриці Джонса з ненульовою уявною частиною недіагональних елементів. Обговорено аналогію між цими двома матрицями. Для кристалічної пластинки з оптичною віссю вздовж нормалі до пластинки наше представлення УМД зводиться до форми, яка приводить до вектора Джонса, отриманого іншими авторами в параксіальному наближенні. 

  1. Jones R, 1941. A new calculus for the treatment of optical systems. I. Description and discussion of the calculus. J. Opt. Soc. Amer. 31: 488–493. doi:10.1364/JOSA.31.000488
  2. Jones R, 1941. A new calculus for the treatment of optical systems. II. Proof of three general equivalence theorems. J. Opt. Soc. Amer. 31: 493–499. 
  3. Jones R, 1941. A new calculus for the treatment of optical systems. III. The Sohncke theory of optical activity. J. Opt. Soc. Amer. 31: 500–503. doi:10.1364/JOSA.31.000500
  4. Jones R, 1942. A new calculus for the treatment of optical systems. IV. J. Opt. Soc. Amer. 32: 486–493. doi:10.1364/JOSA.32.000486
  5. Jones R, 1947. A new calculus for the treatment of optical systems. V. A more general formulation, and description of another calculus. J. Opt. Soc. Amer. 37: 107–110. doi:10.1364/JOSA.37.000107
  6. Jones R, 1947. A new calculus for the treatment of optical systems. VI. Experimental determination of the matrix. J. Opt. Soc. Amer. 37: 110–112. doi:10.1364/JOSA.37.000110
  7. Jones R, 1948. A new calculus for the treatment of optical systems. VII. Properties of the N-matrices. J. Opt. Soc. Amer. 38: 671–685. doi:10.1364/JOSA.38.000671
  8. Yeh P, 1982. Extended Jones matrix method. J. Opt. Soc. Amer. 72: 507–513. doi:10.1364/JOSA.72.000507
  9. Gu C and Yeh P, 1993. Extended Jones matrix method. II. J. Opt. Soc. Amer. A. 10: 966–973. doi:10.1364/JOSAA.10.000966
  10. Lien A, 1990. Extended Jones matrix representation for the twisted nematic liquid crystal display at oblique incidence. App. Phys. Lett. 57: 2767–2769. doi:10.1063/1.103781
  11. Lien A, 1997. A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays. Liq. Cryst. 22: 171–175. doi:10.1080/026782997209531
  12. Yu F H and Kwok H S, 1999. Comparison of extended Jones matrices for twisted nematic liquid crystal displays at oblique angles of incidence. J. Opt. Soc. Amer. A. 16: 2772–2780. doi:10.1364/JOSAA.16.002772
  13. Wöhler H, Hass G, Fritsch M and Mlynski D A, 1988. Faster 4x4 matrix method for inhomogeneous uniaxial media. J. Opt. Soc. Amer. A. 5: 1554–1557. doi:10.1364/JOSAA.5.001554
  14. Berreman D, 1972. Optics in stratified and anisotropic media: 4x4 matrix formulation. J. Opt. Soc. Amer. 62: 502–510. doi:10.1364/JOSA.62.000502
  15. Berreman D, 1973. Optics in smoothly varying anisotropic planar structure: application to liquid crystal twist cells. J. Opt. Soc. Amer. 63: 1374–1380. doi:10.1364/JOSA.63.001374
  16. Lien A and Chen C J, 1996. A new 2x2 matrix representation for twisted nematic liquid crystal displays at oblique incidence. Jpn. J. Appl. Phys. 35: L1200–L1203. doi:10.1143/JJAP.35.L1200
  17. Volyar A and Fadeyeva T, 2003. Generation of singular beams in uniaxial crystals. Opt. Spectrosc. 94: 235–244. doi:10.1134/1.1555184
  18. Nye J F and Berry M V, 1974. Dislocations in wave trains. Proc. Roy. Soc. Lond. A 336: 165–190. doi:10.1098/rspa.1974.0012
  19. Soskin M S and Vasnetsov M V, 2001. Singular beams. Progr. Opt. 42: 219–276. doi:10.1016/S0079-6638(01)80018-4
  20. Azzam R M A and Bashara N M, Ellipsometry and polarized light. Oxford: North-Holland Publishing Company (1977). 
  21. Artega O and Canillas A, 2010. Analytic inversion of the Mueller-Jones polarization matrices for homogeneous media. Opt. Lett. 35: 559–561. doi:10.1364/OL.35.000559 PMid:20160817
  22. Nye J F, Natural focusing and fine structure of light. Bristol and Philadelphia: IOP Publishing (1999). 
  23. KiselevA D, Vovk R G, Egorov R I and Chigrinov V G, 2008. Polarization-resolved angular patterns of nematic liquid crystal cells: Topological events driven by incident light polarization. Phys. Rev. A. 78: 033815. doi:10.1103/PhysRevA.78.033815
  24. Volyar A V, Shvedov V G and Fadeeva T A, 2002. Optical vortex generation and Jones vector formalism. Opt. Spectrosc. 93: 267–272. doi:10.1134/1.1503758
  25. Volyar A V, Fadeyeva T A and Egorov Yu A, 2002. Vectorial singularities of Gaussian beams in uniaxial crystals: generation of optical vortices. Pis’ma v Zhurn. Tekhn. Fiz. 28: 70–77. 
  26. Volyar A V and Fadeyeva T A, 2003. Optical vortices in crystals: birth, annihilation and splitting of polarization umbilics. Pis’ma v Zhurn. Tekhn. Fiz. 29: 58–64. 
  27. Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A S, Neshev D N, Krolikowski W and Kivshar Y S, 2006. Generation of single-charge optical vortices with an uniaxial crystal. Opt. Express. 14: 3724–3729. doi:10.1364/OE.14.003724 PMid:19516519
(c) Ukrainian Journal of Physical Optics