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Abstract. We derive compact representation of an extended Jones matrix (EJM) 
suggested by Lien [Lien A, 1997. Liq. Cryst. 22: 171–175] for the case of oblique 
light incidence. Our representation of the EJM is handy for analytical calculations 
and has the form of a general Jones matrix, with nonzero imaginary parts of its off-
diagonal elements. An analogy between these two matrices is discussed. For a 
crystal slab with the optic axis along the slab normal, our representation of the EJM 
reduces to a form that yields the Jones vector identical to that obtained by the other 
authors in the frame of paraxial approximation. 
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1. Introduction 
Jones matrix formalism is a powerful tool for calculating electric field vector of a light wave 
exiting a system of optical elements. Originally, it has been designed for normal light incidence 
[1–7]. Several attempts have been made to extend this method for the case of oblique incidence. At 
first Yeh [8, 9], and then Lien [10, 11] have derived an extended Jones matrix (EJM) for the 
oblique incidence of light. Though these two approaches differ in the way of matching the 
boundary conditions and so yield literally different forms of the EJM, they produce reasonable 
agreement when applied for numerical calculations of the light transmittance through twisted 
nematic liquid-crystalline cells. Lien has neglected the effect of light reflection and considered 
boundary conditions only for the electric field vector [10, 11]. As a result, his version of the EJM 
looks simpler when compared with that by Yeh [8, 9] and because of this is extensively used for 
simulating liquid-crystal displays. Yu and Kwok [12] have compared the two approaches to the 
results obtained using the fast 44 Berreman’s matrix method [13] (which is an approximation of 
the exact Berreman’s 44 matrix method [14, 15]) and have shown that the Yeh’s version [8, 9] 
produces smaller errors. Later on, Lien [16] has suggested a new version of the EJM obtained 
when combining the boundary conditions for the both electric and magnetic field vectors. This 
new algorithm indeed shows some improvement [12] but becomes twice as lengthy. Whether or 
not, but at the incidence angles smaller than 45o, the Lien’s version [10, 11] still shows good 
enough accuracy, in comparison to the Yeh’s approach. 

Since we seek for a compact representation of the EJM convenient for analytical derivations, 
in this work we will deal with the older (less exact but essentially simpler) version of the EJM 
derived by Lien [10, 11]. It takes the form 

1
L LJ SG S  ,      (1) 
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Here LJ  is written in the right-hand Cartesian coordinate system, of which Z axis lies along the 
normal to the surfaces of crystalline slab and X axis is directed along the projection of the light 
wave vector k


 on the surface first met by the light beam (this is called below as a k -coordinate 

system).  
 

 

Fig. 1. A sketch of k  - and  
n  - coordinate systems. 

 
Of the other notation, the subscript L refers to the conventions of matrices adopted by Lien in 
Ref. [11], and the matrix S  plays a part of rotation matrix. The latter transforms the birefringence 
Jones matrix LG  (designed for the normal light incidence and written in the principal coordinate 
system) into the matrix LJ  playing a part of the Jones matrix relating the incident and exit Jones 
vectors at the oblique light propagation. Let us remind that LJ  is written in the k -coordinate 
system. However, S  does not represent a true rotation matrix because it is not orthogonal, being 
also called as “non-orthonormal”. 

The property of non-orthogonality for the S  matrix reflects the fact that, in a general case, 
the ordinary and extraordinary waves at the oblique light incidence propagate in crystal along dif-
ferent directions defined by the Snell’s law of refraction at the crystal interface and thus are not 
mutually orthogonal [8]. For further details we refer a reader to Ref. [11], where a detailed deriva-
tion of Eq. (1) is given. The components of the matrix S  written in the k -coordinate system with 

the light wave vector 0 (sin , 0; cos )k k  


 fixed in the ZX plane (with   being the light inci-

dence angle, 0 2 /k   , and   the light wavelength in vacuum) are of the following form [11]: 
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where 
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and 
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are z-components of the light wave vectors for the two eigenwaves propagating in crystal slab, and 

ij  denote the components of the dielectric tensor of that slab: 
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Here   and   stand for the polar and azimuthal angles of the optic axis, on  and en  the refractive 
indices for the ordinary and extraordinary light waves. The angles   and   are measured with 
respect to the XY plane and the X axis, respectively. 

The equation system given by Eqs. (1)–(6) is applicable for uniform optically uniaxial 
nematic cells or single-crystalline plates. For a distorted nematic cell, the liquid-crystal slab is 
sliced into thin plates such that each plate is characterised by its own orientation of the optic axis 
being uniform within the plate. The Jones matrix of deformed nematic would then be a matrix 
product of the matrices of the elementary plates. Such an approach works well when the state of 
exiting light is calculated numerically with a computer. However, the analytical calculations are 
difficult because of lengthy representation of the matrix components (see Eqs. (1)–(6)). For the 
Yeh’s [8, 9] and the new Lien’s [16] approaches they are even more routine.  

The article is organised as follows. In Section 2 we present a compact form of the matrix S  
handy for analytical calculations. Further substituting our representation for S  into Eq. (1), we 
find that the obtained EJM has a form of a general Jones matrix (GJM) M  [7] having nonzero 
imaginary parts of the off-diagonal elements ( 12 21M M ). This is what can be expected 

intuitively when the light reflection is neglected. Considering that the GJM is represented in the 
principal coordinate system (a so-called n -coordinate system, in which the Z axis is directed along 
the normal to crystal slab surfaces and the X axis along the projection of the optic axis n  on the 
first surface) and the EJM is written in the k -coordinate system, in Section 3 we transform the 
EJM from the k -coordinate system to the principal n -coordinate system, in order to compare 
these two matrices. We find that even after this transformation the EJM has non-zero imaginary 
parts in its off-diagonal components. In Section 4 we discuss an analogy between the EJM and the 
GJM. Section 5 demonstrates that for a homeotropic liquid-crystalline cell, with its optic axis n  
perpendicular to the substrates, the EJM reduces to a form obtained earlier by the other authors 
(see [17] and references herein) in a paraxial approximation. For a circularly polarised beam of 
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conical rays and under the conditions of specific experimental geometry, this leads to the electric 
field components degenerated with respect to the azimuthal angle of the incident ray plane, thus 
being at the heart of optical singularities (or wave dislocations, a term coined by Nye and Berry 
[18] – see also [19]). Finally, Section 6 concludes our work. 

2. Compact representation of matrix S 
After substituting Eqs. (6) into Eqs. (3) and some algebra, we find that S  reduces to a compact 

form (cf. with initial Eqs. (3)–(6))  2 2( , ) cos sinL e oS R n n     , with 
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and 1 1 0 2 2 0 0 0/ , / , / sinz z x xk k k k k k k k k     . A common factor  2 2 cos sine on n    in S  

can be omitted because it cancels when being substituted into Eq. (1). For the normal incidence 
( 0 0xk  ), ( , )LR    reduces to 
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The form of 0 ( )LR   differs from the standard representation of the rotation matrix [20], 

0
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.     (9) 

The origin of this difference is in the form of the birefringent matrix GL (see Eq. (2)) used in 
[11]. As stated in the Section 1, one of the goals of this article is to compare the form of the EJM 
to the general form of the Jones matrix given by Eqs. (3.26) and (4.17) of Ref. [7]. To do this one 
has to match the notation conventions used in [11] to those by Jones in Ref. [7]. The standard form 
of the birefringent matrix introduced by Jones would read as 

2

1
0

0

0

z

z

ik z

ik z

e
G

e





 
  
  

,     (10) 

in accordance with the expression 
( )

0
i t kzE E e         (11) 

for the electric field vector for light propagating in an isotropic medium. It is assumed that the 
medium has the absorption index   and the refractive index n , the XYZ coordinate system is 
right-handed, and the light with the amplitude 0E  and the wave number 2 ( ) /k in     travels 

in the positive direction of the Z axis. Below we adopt the convention corresponding to the form of 
the electric field vector given by Eq. (11), thus replacing z  by z  in Eq. (2). The matrix GL in 
which z  is replaced by z  will be denoted G. The G matrix can be obtained from G0 after 
rotating it by / 2 :  

0 0 02 2
G R G R            .      (12) 

Then the EJM adopted to the Jones notation convention reads as 
1

0J R G R ,      (13) 

where  
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Explicitly R  acquires the following form: 
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Now it is clear that, at the normal incidence ( 0 0xk  ), the R  matrix reduces to the rotation 

matrix 0 ( )R  , in accordance with the convention of the standard representation (see Eq. (9)). At 

0 0xk  , the common factor 2 coson   in R  can be omitted because it cancels when being 

substituted into Eq. (13). 
Substituting Eq. (15) into Eq. (13), one obtains the explicit form of the EJM: 
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3. EJM in the principal coordinate system 
It is seen from Eq. (16) that the form of the matrix J  is similar to that of the GJM M  (see also 
Eq. (23) below). However, one has to recall that the EJM appearing in Eq. (16) is written in the  
k - coordinate system, while M  is expressed in the principal n - coordinate system. To compare 
the J  and M  matrices, one has to transform the former to the n - coordinate system. 
Mathematically this transformation may be written as 

   0 1
0 0J R J R  ,     (17) 

where 0J  is the matrix J  expressed in the principal coordinate system and 0R  the rotation matrix 

given by Eq. (9). After this rotation in the n - coordinate system,   becomes the azimuthal 

angle of the incident ray (see Fig. 1). Accounting for Eqs. (9) and (13), one can symbolically 

rewrite 0J  (see Eq. (17)) as 0 1
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In the explicit form we have 
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With the matrix U given by Eq. (18), we find the following relations: 
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Substituting Eqs. (20) into Eqs. (19), we rewrite 0J  resulting in 
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where 12 21( ) / 2    , 12 21     , i.e. 12 / 2     , 21 / 2     . 

4. EJM versus GJM 
Let us write out the M  matrix in the following form: 
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2 2 2
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sin cos sin
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J J

i z

J J

CB iCD i LB iLDT LB iLD T Tz i z z
T TM e

CB iCD i LB iLD T Tz LB iLD Tz i z
T T



    
  

       
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Now that the both matrices are expressed in the same n -coordinate system, the EJM 0J  (see 
Eqs. (22)) can be compared to the GJM M. To be explicit, we have used the notations in Eq. (23) 
similar to those introduced in Ref. [21]. Both the notation and the analogies between the EJM 
designed for the oblique incidence and the GJM used for the normal incidence are summarised in 
Table 1. Equating the corresponding real and imaginary parts of Eqs. (22) and (23) results in 

0  , 0LD  , 0JLD  , 0CB  , T k  , 11/ 1 2LB T   , / 2JLB T   , /CD T   . 

As expected, the mean absorption, the Jones dichroism and the circular birefringence are 
absent since we consider non-absorbing, non-gyrotropic crystal plates. The phase retardation due 
to the linear birefringence is represented by the term 11(1 2 )LB k   . At 0 0xk  , i.e. for the 

normal light incidence, we have 11 0   and the linear phase retardation reduces to its 

conventional form, 2 /LB n   . Due to the inequality 12 21 0   , the off-diagonal 

components 0
12 122 sin( / 2)J i kz   and 0

21 212 sin( / 2)J i kz   can be expressed respectively as 
0
12 2 ( / 2)sin( / 2)J i kz      and 0

21 2 ( / 2)sin( / 2)J i kz     . This is why the factor 2 k   

plays a role of the Jones birefringence JLB  (or 45g  in the Jones’ notation [7]) and k   of the 

circular dichroism.  
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Table 1. An analogy between the EJM and the GJM 
Symbols and definitions  Optical parameter  

GJM [21] EJM (Eq. 22) GJM [7]  
Mean complex wave 
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The physical meaning of the Jones birefringence JLB  has been discussed by Jones [7] using 

a transparent, non-gyrotropic ( 0  , 0LD  , 0JLD  , 0CB  , 0CD  ) crystal as an 

illustrative example. For this case the M  matrix reduces to 

2 cos sin sin
2 2 2

sin cos sin
2 2 2

t t J t
i nz t t

t
J t t t

t t

T z T iLB TiLB z z
T T

M e
iLB T T z TiLBz z
T T






  
 

 
 

 

,   (24) 

where 2 2
t JT LB LB  . The matrix tM  can be diagonalised by its rotation through an angle   

such that tan 2 /JLB LB  , with cos 2tLB T   and sin 2J tLB T  . In terms of  , the matrix 

tM  becomes as 

2 cos cos 2 sin sin 2 sin
2 2 2

sin 2 sin cos cos 2 sin
2 2 2

t t t
i nz

t
t t t

T z T T
i z i z

M e
T T z T
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
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 
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
   
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.  (25) 

After the rotation, the matrix tM  transforms into 

2 2
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0 0 0
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As a consequence, a transparent, non-gyrotropic crystal plate with a nonzero Jones birefringence is 

equivalent to a crystal plate with the phase retardation 2 2
t JT LB LB   and its axes rotated by 

the angle 2 arctan( / )JLB LB   with respect to the X axis. In the other cases comprising 

absorbing or/and gyrotropic crystals, M  can be diagonalised by no rotation of the coordinate 
system. Naturally, the EJM matrix that appears in Eq. (22) also cannot be diagonalised by rotations 
of the coordinate system because of nonzero  . The both terms 2 k  and k   make the off-
diagonal components of the EJM nonzero at 0  , owing to symmetry breaking that occurs for 

the light propagation problem under condition of the oblique incidence. The origin of these two 
terms is rooted in the form of the matrix S . Indeed, S  and consequently R  are not orthogonal at 

0, 90o    and, as a result, the matrix J  (see Eq. 22) is not symmetric at 0, 90o   . 

Presence of the term k   reveals a problem hidden in the form of the S  matrix. Although 
the crystal slab is transparent (no light absorption and so no linear or circular dichroisms are 
assumed), it is easy to show that the term k   affects the amplitude of the transmitted light even 
with no analyser placed behind the crystal and produces a circular dichroism. The losses due to the 
term k   could be associated with light reflection, which effectively plays a role of light 
absorption for the transmitted light, decreasing its amplitude. However, the Lien’s approach 
declares that the light reflection is neglected. This problem might be also coupled with the form of 
the boundary conditions, which have been applied only to the electric field vector by the author of 
the work [11]. It is clear from Eq. (23) that for a transparent, non-gyrotropic crystal and under 
neglect of the light reflection, the Jones matrix has to be symmetric. We are therefore led to 
conclude that the Lien’s EJM given by Eqs. (1)–(6) is in fact not free of the reflection effects, in 
spite of the initial assumptions made in the study [11]. This problem might be a cause for the 
errors in the light transmittance calculations produced by the Lien’s matrix at high (> 45o) 
incidence angles (see Section 1 and Ref. [12]). It would be of both practical and fundamental 
interests to check whether the zeroing of the term k   would decrease the errors occurred in 
calculations of the optical transmittance of liquid crystal displays. 

5. Homeotropic cell 
It is readily understood that the polarisation state of light transmitted trough crystal is not uniform 
for the case of conical incident beam. It has been recognised by Nye for the first time [22] that a 
nonuniform polarisation field might bear polarisation singularities. Among these, one can recall 
so-called C-points, where the light wave is circularly polarised so that the azimuth of the light 
polarisation ellipse is undefined, and L-lines, where the light wave is linearly polarised and so the 
chirality (left- or right-handed) of the ellipse is undefined. A detailed analysis of the field of 
polarisation ellipses observed in the conoscopic pattern has been performed analytically by 
Kiselev et al. [23] (see also references therein) for the case of homeotropic cell and then computed 
numerically for both tilted and planar cells. An explicitly simple form of the EJM presented above 
(see Eq. (22)) allows one for analytical consideration of the polarisation ellipse field for any 
orientations of the optic axis.  

Recently it has been claimed [17] that from the singularities mentioned above one can extract 
a true optical vortex with zero intensity and undefined phase in its core, provided that a paraxial 
light beam propagates through a slab of uniaxial crystal, with the optic axis and the beam axis 
directed along the slab normal. Below we will show that, for a crystal slab with its optic axis 
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directed along the slab normal (a so-called homeotropic cell), the EJM produces the Jones vector 
in the form of obtained earlier by the other authors in the paraxial approximation (see [17] and 
references herein).  

For a particular case of the homeotropic cell ( 90   ), the parameters 11 12 21, and    

reduce to  

11 12 211 2 cos 2 , 2 2 sin 2        ,    (27) 

and the EJM transforms to 

cos cos 2 sin sin 2 sin
2 2 2

sin 2 sin cos cos 2 sin
2 2 2

H ikz

kz kz kzi i
J e

kz kz kzi i

 

 



    
  

     

. (28) 

Here HJ  is identical to tM  (see Eq. (25)) with the accuracy to the signs which can be adjusted 

while replacing   by  . It is clear that HJ  is diagonalised by the rotation around the angle 

 . We recall that   becomes the azimuth of the incident light ray after the rotation of the 

coordinate system given by Eq. (17). 
Let the incident beam be circularly polarised, with the electric field  

0
11

2
E

i
    

.      (29) 

Then with the form of HJ  given by Eq. (28), the electric field vector of the light passed through 
the crystal has the following components: 

2

2

cos sin
2 2

cos sin
2 2

i
x

i
y

kz kzE ie

kz kzE i ie









   
        

.    (30) 

According to Ref. [17], the factor 2ie   is at the origin of optical singularities with the topological 
charge 2 . Here we do not explore this problem in a much detail, but instead send a reader to 
Refs. [17, 24–27]. 

6. Conclusion 
Starting from the form of the EJM suggested by Lien for the oblique light incidence, we have 
derived its compact representation, which looks rather handy for further analytical calculations. 
Our representation of the EJM has the form of the GJM, with nonzero imaginary parts appearing in 
its off-diagonal elements. A close analogy between these two matrices implies that the terms 
2 k  and k   of the EJM play parts of the Jones birefringence and circular dichroism, 
respectively. The both terms are nonzero in case of 0  . Were   equal to zero the EJM could 

be diagonalised as expected for a non-gyrotropic, non-absorbing crystal under the condition of the 
light reflection neglected. The presence of the term   that could be treat as a circular dichroism 
reveals a problem hidden in the Lien’s extended rotation matrix S . This problem has been 
uploaded in the S  matrix by neglecting the light reflection and putting incomplete boundary 
conditions in the work [11] that deal only with the electric field vector. For the incidence angles 
smaller than 45o, the term   approaches zero and the EJM becomes accurate enough for 
describing light propagation through crystalline slabs at the oblique incidence. 
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A simple analytical form of the EJM derived in this work allows for analytical studies of the 
conoscopic patterns arising behind crystalline slabs, including polarisation-resolved conoscopic 
mapping of the singular C-points and L-lines, which has recently been performed only 
numerically. For the homeotropic liquid-crystal cell, our representation of the EJM reduces to the 
form that gives the Jones vector identical to that obtained by the other authors in the paraxial 
approximation. The latter is at the origin of optical singularities generated using optically uniaxial 
crystals. 
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Анотація. Отримано компактне представлення узагальненої матриці Джонса (УМД), 
запропонованої Ліеном [Lien A, 1997. Liq. Cryst., 22, 2: 171 – 175] для похилого падіння 
світла. Наше представлення УМД є зручним для аналітичних обчислень та має форму 
загальної матриці Джонса з ненульовою уявною частиною недіагональних елементів. 
Обговорено аналогію між цими двома матрицями. Для кристалічної пластинки з оптичною 
віссю вздовж нормалі до пластинки наше представлення УМД зводиться до форми, яка 
приводить до вектора Джонса, отриманого іншими авторами в параксіальному 
наближенні. 
 


