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1. Introduction

Studies of dynamics of optical solitons have transformed telecommunication engineering beyond
comprehension. Today the appropriate technologies are widely applied in many braches, e.g. in
Internet communication. Recent successes in quantum optics have also made some modern-day
technological marvels a reality. A delicate balance between chromatic dispersion and self-phase
modulation is one of the key factors that need to be sustained for a smooth transmission of soliton
pulses across inter-continental distances. This is not always ensured. One possible reason is that
the chromatic dispersion could run low. In such a situation, the common chromatic dispersion gets
replaced by a combination of third- and fourth-order dispersions, which would together
compensate for its low count.

In the present work, we will handle a governing nonlinear Schrodinger equation (NLSE) that
comes with a combination of third- and fourth-order dispersions, which would yield cubic—quartic
(CQ) solitons. A self-phase modulation in this model is set to be associated with a quadratic—cubic
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(QC) form of the nonlinear refractive index. It should be marked that the optical solitons appearing
under the condition of QC nonlinearity law have already been considered by using different
integration methods [1-15].

The optical solitons with the QC nonlinearity and nonlinear perturbation terms have been
studied with a semi-inverse variational principle [1], a method of undetermined coefficients [2]
and a hypothesis of travelling waves [3]. Chirped optical Gausson solitons with the QC
nonlinearity have been found in the presence of perturbation terms with the aid of collective-
variables approach [4]. The structure and dynamics of one-dimensional binary Bose gases forming
quantum droplets have been touched upon by solving a relevant amended Gross—Pitacvskii
equation [5]. Optical-soliton cooling under QC nonlinearity has been reported in Ref. [6]. CQ
optical solitons in the birefringent fibres with Kudryashov’s law for the nonlinear refractive index,
which have three special cases of the power-law nonlinearity parameters, have been addressed [7],
using an extended trial-function algorithm. Chaotic solitons under managed QC nonlinearity have
been yielded within the NLSE [8]. A single terahertz electromagnetic pulse has been found to have
unique features in the presence of both second- and third-order nonlinearities [9]. Kink solitons in
the QC nonlinear dispersive media have been discussed in Ref. [10]. Soliton solutions for the
optical fibres made of QC nonlinear media have been obtained by virtue of a complex ansitze
approach [11]. Moreover, optical solitons and conservation laws for the case of QC nonlinearity
have been obtained [12]. CQ optical solitons have been found with the QC NLSE for four different
non-Kerr nonlinearities, using a unified method of Riccati-equation expansion [13]. Bright, dark
and singular optical solitons for the case of Kudryashov’s sextic power-law nonlinearity of
refractive index have been obtained with a unified Riccati-equation method, a mapping scheme
and a supplemented Kudryashov’s algorithm [14]. Finally, CQ optical solitons have been revealed
in the polarization-preserving fibres with five different nonlinear refractive-index structures, using
a perturbed complex Ginzburg—Landau equation and a supplemented Kudryashov’s approach [15].

The QC form of the self-phase modulation mentioned above has been first proposed in 1994
and then resurfaced in 2011 (see Refs. [8—10]). Subsequently, a plethora of research results have
been reported for such a nonlinear form of refractive index [1-7, 11, 12]. After that the concept of
CQ solitons has come and gained a lot of attention of researchers. A number of prominent results
have made it visible all across with a variety of models to address the soliton dynamics in optical
fibres [13—15].

In the present work we combine the concept of CQ solitons to be studied with the QC
nonlinearity. Namely, we formulate the governing NLSE and derive its solutions with the aid of
sine-Gordon equation approach. This NLSE is modelled for the first time in the cases of
polarization-preserving and birefringent fibres, both in the presence and absence of perturbation
terms. Moreover, we report for the first time a complete spectrum of soliton solutions, which
emerge from this integration scheme. The main results of our study will be displayed after a brief
introduction to our model.

2. Polarization-preserving fibres

In this section we address the CQ-NLSE for the case of QC nonlinearity in the polarization-
preserving fibres.

2.1. Unperturbed model
The unperturbed CQ-NLSE with the QC nonlinearity in the polarization-preserving fibres reads as
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iqt + iaQ)acx +quxxx + (Cl |q| %) |q|2 )q =0, (1)

where x and ¢ are the dimensionless distance and time, respectively. The first term in the Eq. (1)
refers to the linear temporal evolution, the complex-valued function q(x,t) represents the optical
solitons in the polarization-preserving fibres, a and b are the constant coefficients of respectively

third- and fourth-order dispersions, the constant coefficients ¢; and ¢, constitute the QC

nonlinearity, and i =+/—1.
To obtain the optical solitons from the unperturbed CQ-NLSE with the QC nonlinearity in
the polarization-preserving fibres, we assume the travelling-wave transformation
q(x,1)=U (&)™), &=x—u, @
@(x,t) =—Kkx+0t+06,,
where the constants @ ,v, k and 0, represent the wave frequency, the velocity, the wave number

and the phase constant, respectively. Here the real-valued functions U (& ) and go(x,t) stand

respectively for the amplitude and phase components of the soliton. After substituting Eq. (2) into
Eq. (1), one obtains a fourth-order ordinary differential equation

U™ 4 6bk7U" ~(+ 364 )U + U2 +6,U° =0, 3)
along with the constraints
a = 4bx, “4)
v =—8bhK>, (5)
2 ) 4
where the notations '=—, "= d—2 and () _ d—4 are used.
dé dé dé

Eq. (3) can be integrated to determine the soliton profile, while Eq. (5) gives the soliton
velocity. According to the approach of sine-Gordon equation, Eq. (3) yields a formal solution

U(g)= icosi_l (V(g))[B,. sin(V(&))+ 4 cos(V(g))] +4, (6

along with the ordinary differential equation
V(&) =sin(V(£)), Q)

and the exact solutions
sin(V(é)) =sech(&), sin(V(f)) =icsh(&),
cos(V(&))=tanh(&), cos(V(&))=coth(&).

Here V(é) is a new positive function of §, 4; and B; are the constants, and the integer N can be

®)

identified by applying a balance principle between the nonlinear term and the highest-order

derivative term. Balancing U (™) with U? in Eq. (3) gives N =2 . Thus, Eq. (6) transforms into
the solution

U(&)= 4y +Bsin(V (&))+ Acos(V (&)

+cos(V(f§))(Bz sin(V(:ﬁ))+A2 cos(V(é))). ©)
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After inserting Egs. (9) and (7) into Eq. (3), one can arrive at the following results.
Case 1:

11
AIZO, BIZO, A():i - A2:0,

(10)

Substituting Egs. (10) and (8) into Eq. (9) results in
q(x,1)=+ b {i 11++/120tanh (x + 8b1<3t)sech (x+ be%)} olTRErarsth) 11y
)

The solution given by Eq. (11) implies a combo dark-bright soliton, along with the corresponding

\ o V@
(12)

constraint bc, > 0.
Case 2:

¢ = J_r(3;<2 +10) 809 oo —b(3;<4 —24x? —16).
Inserting Egs. (12) and (8) into Eq. (9) leads to
q (x,t) == |- 1206 {1 + tanh? (x + 8bK‘3Z)} ei(_Kx+wt+9°), (13)

%)

g(x,t)== /—liOb {1+coth2(x+8b:<3z)}e"("‘““”+9°). (14)
2

The solutions given by Egs. (13) and (14) display respectively dark and singular solitons, along

with the constraint bc, < 0.

Case 3:
4 2
A =0,4, =+ —120b,A0:i3bK +12b21< 88b+w 5 ,
K 37 +10 6bc,

4 2 _
B =0,B,=0, =i3bK 1201)21( +40b-5w /_3&’ (15)
3k° +10 1056

1176268 +936p2i6 +(—1 17652 + 24ba))rc4 +(4800b2 —120ba))rc2

+4480b +280bw —50° =0.
Substituting Eqgs. (15) and (8) into Eq. (9) gives

4 2 A
‘I(x,t)z{iBbK +1abr 88b+w\/ > +\/—120btanh2(x+8bz<3t)}el(_’“”””0°), (16)

3% +10 6bc, \ o

4 2 .
2(ed) {i3b1< +12bK% —88b+ @ \/ 5. \/_120bc0th2(x+8b’<3t)}ez(—1cx+wt+00). an

3% +10 6bc, \ o
The solutions (16) and (17) represent dark and singular solitons, respectively, with the constraint
bc, <0.
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Case 4:

4 =08 =0,y =t |- gy |30 g 30P
) ) )

(18)
3b
(= i(61<2 +5) _2249 ) =—b(31<4 — 6K —1).
10
Inserting Egs. (18) and (8) into Eq. (9) leads to
g(x,t)=4% 30 {1 +coth? (x +8b1<3t) +coth (x + 8b1<3t)csch(x+ 8b1<3t)}

><ei(—lcx+a>t+00)

The solution (19) signifies a combo singular soliton with a constraint bc, < 0.

2.2. Perturbed model

The perturbed CQ-NLSE with the QC nonlinearity in the polarization-preserving fibres is
structured as

iq, +1aq e + b e +(01 lg|+c2 Iqlz)q = {a (Iqlz'" q)x + A(Iqlzm )X g+ gl qx}, (20)

where o is the coefficient of self-steepening nonlinearity, A and p denote the coefficients of

higher-order dispersion effects, and m stands for the overall nonlinearity exponent. Substituting
Eq. (2) into Eq. (20) leads to the ordinary differential equation

pu™) +6bK2U"_(60+3bK4)U+ClU2 +oU° ~(ka+ru)U*" =0, (21)

with the constraints

a=4bk, (22)
v=—8bk>, (23)
2am+o+2Am+pu=0. (24)

Eq. (21) admits Eq. (9). Inserting Eqgs. (9) and (7) into Eq. (21) gives rise to the following
results.

Case 1:
AO =0, A] =0, B] =0, Bz ZO,
m:l,K:i&, w=w, (25)
3 3
- 120b ’ :i16\/30b(ou<+y1<—cz)
oK + UK —Cy 5

Substitution of Egs. (25) and (8) into Eq. (9) results in

12 -
q(x,t) = i\/Itanh2 (x+ 8br<3t)el( Kx+m+9°), (26)
QK + LUK —cy
q (X, f) =+ &cothz (x + 8bK3t) frxtartd,) 27)
\ oK + i —c,

The solutions given by Egs. (26) and (27) represent respectively dark and singular solitons, with

the constraint b(ax + ux —cy ) > 0.
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Case 2:
0 B2 = 0 m= 1 Al

, 1205 lZ()b
aK + KU — C2 aK + KU — C2

(3 247 16)p, e i(3r< +10)\/30l57(a1c+,(u_02) |

Inserting Eqgs. (28) and (8) into Eq. (9) leads to

g(x1)=2 /ﬂ {1 + tanh? (x + 8b1<3t)} Qlrrrertd,) (29)
oK+ Kl —Cp

g(x,0)== /& {1 +coth? (x +8b1<3t)} Glorxrortty) (30)
oK+ Kl —Cp

The solutions given by Eq. (29) and (30) mean respectively dark and singular solitons, under the

constraint b(ak + uk —c, ) > 0.

Case 3:

BIZO, AIZO, A2:0, m=l, K==

do =1 / 1 =t |- 1205 _ 1206 31)
aK+Ku—cy oK + Kl —Cy

91b
= \/ llb oac+r</.t c2) wz—T.
Substitution of Egs. (31) and (8) into Eq. (9) yields the results
q (x, t) =+ b {\/ﬁ ++/120tanh (x + 8b1<3t)sech (x + 8b1<3t)}
aK +Ku—c, (32)

Xei(_KXerHH" ) .

The solution (32) is a combo dark-bright soliton appearing under the constraint
b(ak + ux —c, ) <0.
Case 4:
m=1,A4,=0,4=0, B, =0,
23 47b 306

K= +— :—, A =%
aK + Kl — 02 (33)

3b aK +Ku—c
S LR _+174/ ” 2)
aK+Ku—cy

Inserting Egs. (33) and (8) into Eq. (9) leads to
30b

P {coth2 (x + 8br<3t) + coth (x+ 8b1<3t)csch(x + SbKSt)}

a(x0)=2 (34)

xei(_Kx+wt+0"),

The solution (34) signifies a combo singular soliton, with the constraint

b(ak + i —cy) > 0.
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Case 5:

m=1, 4 =0,B =0, 4, =+ 3

oK + KU —C,
w:—(3r<4—61<2 —l)b, gy =t % (35)
oK + Kl —Cy
3b + KU —
By =t ——% ) i(ox®+5) 3b(ax +rp-cy)
OK+KU—Cy 10
After substituting Egs. (35) and (8) into Eq. (9) one derives the solution
306 2 3 3 3
q(x,t) == —{l+coth (x+8bl< t)+coth(x+8blc t)csch(x+8br< t)}
P, (36)

><ez’(—:<x+mz+90 ) )

Eq. (36) implies a combo singular soliton, with the constraint b(ax + pk —c¢,) > 0.

3. Birefringent fibres
Now we proceed to the CQ-NLSE with the QC nonlinearity appearing in the birefringent fibres.

3.1. Unperturbed model

Under conditions of the QC nonlinearity arising in the birefringent fibres with four-wave mixing,
the unperturbed CQ-NLSE can be written in the form

ig, +ia1q . + 019 x +clq\/|q|2 +|r|2 + qr* + q*r + (dl |q|2 +¢ |r|2)q +f1r2q* =0, (37)

i¥, +iayT e +DoFys +czr\/|r|2 + |q|2 + rq* +r*q + (d2 |r|2 +e, |q|2 )r+f2q2r* =0, (38)

where the complex-valued functions ¢(x,¢) and r(x,z) account for the optical solitons in the
birefringent fibres. At /=12, a; and b, stand for the coefficients of third- and fourth-order
dispersions, respectively, d; represent the coefficients of self-phase modulation, ¢ are the
coefficients of cross-phase modulation, and f; are the coefficients of four-wave mixing. For the
coefficients ¢;, the first two terms purport respectively the self-phase modulation and the cross-

phase modulation, while the last two terms depict the four-wave mixing inside the radical function.
To obtain the optical solitons in the birefringent fibres with the unperturbed CQ-NLSE and
the QC nonlinearity, we assume the following travelling-wave transformations:

0(50) =0, (6, () =Us (&),

(39)
E=x—vt, @(x,t)=—Kkx+wt+6.
Substitution of Eq. (39) into Egs. (37) and (38) leads to the real part
i 2 " 4 3
blUl(lV)+(3Kal—6K bl)Ul +(K bl_a)—K al)Ul (40)
+eUf +¢U,Us +d,U} +eU,U? + fiUU? =0,
and the imaginary part
(e — 4Kty )U; + (4 —v=3x7a, U, =0, (41)
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where /=1,2 and [ =3—1. Egs. (40) and (41) can be reduced to the ordinary differential equation

blUl(iv) +6K2blUl" —(a)+3K4bl)Ul +2CZU12 +(dl +el +fl)U13 =0,

under the constraints

Ul" :U17
a; :4Kbl’
v=—81<3bl.

Balancing U l(iv) with U, 13 in Eq. (42) gives the value N =2 . Hence, Eq. (6) has the solution

Up(&)=4+ Blsin(V, (f))+ Alcos(V, (5))+cos(V1 (f))(stin(V, (5))+ Azcos(Vl (5)))

Inserting Eqgs. (46) and (7) into Eq. (42), one obtains the following results.
Case 1:

23

3 2005,
K= i—3 , W=

3

di+e +/ 5

After substituting Egs. (47) and (8) into Eq. (46) one gets

12 o
q(x,t) + _itanhz (X+8K3b1t)el( Kx+a)z+60)’
di+e+ 1
I’(x,t) =+ —ﬂtanh2 (x+8K3b2t)ei(—Kx+a)t+00)’
dy+ey+ [
20 .
q(x,t) = i —icothz (X+8K3b1t)el( Kx+a)t+90),
dl +€1 +fi
12 .
r(x,t) == _Lbzcothz (X+8K3b2t)el( Kx+a)z+90).
dy+ey+ [

N AO=O, A1=0,Bl=0,

(42)
(43)

(44)
(45)

(46)

(47)

(48)

(49)

(50)

(51

The both solutions (48) and (49) represent dark solitons, while the solutions given by Egs. (50) and

(51) are singular solitons, with the constraint b, (d; +¢, + f;) <0.
Case 2:
©=—(3k*~24K> ~16)b;, 4,=0, B =0, By=0,

1200, 1200,
e I O/ R
dl+el+ﬁ d1+€l+ﬁ

¢ =+(3x +10)\/——3b1 (4 1+oel h1)

Inserting Eqgs. (52) and (8) into Eq. (46) leads to

q(x,t) =+ —& {1 + tanh2 (x+81<3b1t)} ei(—Kx+a>t+90),
dl +el +fi

r(x,0)== (1200, {1 + tanh? (x + 8K3b2l‘)} (lorxrort)
dy+e+ /3

(52)

(53)

(54
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12 N
CI(XJ) == _Lbl {1 +C0th2 (x+ 8K3b1t)} el( K'X+a)t+90), (55)
di+e + f
12 -
r(xt)=4% —Lbz{l-i-cothz(x+8lc3b2t)}el( Kxtor+6,) (56)
dy+ey+ 1,

The solutions (53) and (54) signify dark solitons, while the solutions (55) and (56) represent

singular solitons, provided that the constraint b, (d; +¢, + f;) <0 is satisfied.

11b
dy=+|——  4=0, 4,=0,
dl+€l+ﬁ
1205
B =0, By=+ |—-"1 (57)
dl+el+ﬁ

V15 L b (d +e+ )
RAC. e B ,

K== 0]
3 3 2

Case 3:

If we substitute Egs. (57) and (8) into Eq. (46), the relations

q(x,t)==% /ﬁ {\/ﬁ+«/@tanh (x+81<3b1t)sech(x+81<3blt)} (58)

Xei(—xx+a)t+00)
r(xt)=4+ b {\/ﬁ ++/120tanh (x + 8K3b2t)sech (x + 8K3b2t)}
dy+ey+ [ (59)
i(—kx+ot+6,)

b

xe
follow. The solutions (58) and (59) imply combo dark-bright solitons, with the constraint

bl(dl+€l+ﬁ)>0.

Case 4:
Ay =0,4=0,4, == __ 30
dl +el +ﬁ
305,
dl +el +f}

i17\/—30b,(d, +e +f,).

23 47h,
K=t——,o=t——,¢ =
3 3 20

Inserting Egs. (60) and (8) into Eq. (46) leads to

_ f 30, 2 3 3 3
g(x,t)=4% —m {coth (x+81< blt)+coth(x+81< blt)csch(x+8l< blt)} 61)

Xei(—lcx+wt+9(,)
r(x,t)== __ 30 {coth2 (x + 8K3b2t) +coth (x + 8K3b2t) csch (x + 8K3b2t)}
dy+e, + f, (62)
><ei(—;cx+coz+90)
The solutions (61) and (62) represent combo singular solitons, with the constraint &, (d, +e + 1 ) <0.
263
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Case 5:

e |0 [
B dl+el+ﬁ’ ! ’ 2 B dl+el+fl’

305
B =0, B,=% —l, =—(3x*-6 2—lb, 63
T w
¢ :i(61<2 +5)\/——3bl(dl :Oel +fl)

Substituting Eqgs. (63) and (8) into Eq. (46) yields

30h, { 2 3 3 3 }
t)=% |-——11 th 8k bt th 8x7b, h 8k bt
q(x,1) f dre+f +co (x+ K 1)+c0 (x+ K lt)csc (x+ K 1) 64

Xei(—l«x+wt+0{, ) ,

r(x,r)=4% /—% {1 +coth? (x + 8K3b2t) + coth(x + 8K3b2t)csch(x + 8K3b2t)} 65)

Xei(—;cx+coz+90)

The solutions (64) and (65) are combo singular solitons, with the constraint b, (d; +¢; + f;) <O0.

3.2. Perturbed model
Now we consider the perturbed CQ-NLSE with the QC nonlinearity in the birefringent fibres in
which the four-wave mixing is present:

i, + 101G ey + B +clq\/|q|2 t|rf +ar +q7r +(d1 la* +¢ Irlz)q+f1r2q*

= i[o‘l (|q|2 q)x +p (|”|2 r)x * {Al (|q|2 )x +7 (|r|2 )x}q +(y1 la* +4, |r|2)qx:|, (66)

it +iay7 o + Dy +czr\/|r|2 +|q|2 +rq* + r*q + (d2 |r|2 +e, |q|2)r+f2q2r*

=il o), ool o) +faa (i), o) o (b el |

where o, B;, 4. ¥, w and 8 (I=1,2) are the constant coefficients of the nonlinear terms.

67)

Substitution of Eq. (39) into Egs. (66) and (67) leads to the real part
blUl(iv) +(3Kal —6K2bl )Ul" +(K4bl —C()_K3al )Ul +CIU12

(68)
and the imaginary part
(q —4Kbl)Ulm +(4K3bl —v—3K2a,)Ul' +qUU;
(69)
—(3a, +2/1] +,Ltl)U12Ul —3ﬁ]UZ'2UZ' _2le[UiUi —SlUizUl =0.
Egs. (68) and (69) reduce to the ordinary differential equation
BU™ +6x2b,U; —(w+3x*, U, +2¢,U2
11 11 ( z) 12y (70)

+(d; +e + f; —xkoy — kB — Ky —K5,)U,‘7’ =0,

264 Ukr. J. Phys. Opt. 2021, Volume 22, Issue 4



Cubic—quartic optical solitons

with the following constraints:

U; =U,, (71)
a, = 4Kbl’ (72)
v=—-8ik’by, (73)

Eq. (70) admits Eq. (46). Insertion of Egs. (46) and (7) into Eq. (70) gives rise to the
following results.

Case 1:
2005,
K=i¥, ©=— L, 4,=0,4=0,B,=0, B, =0,
dy—t 1204, ’ (75)
oK+ Bk +0,k+ Kk —d; —e — f
c :+8\/6b] (alK+ﬁlK+5lK+ﬂlK—dl _el —f})
| — = 3 .
Substituting Eqs. (75) and (8) into Eq. (46), one derives the relations
120
q(x,t)==% b tanh? (x+81<3b1t)
oK+ ik + 0K+ Kk —d; —e — fi (76)
Xei(—:cx+a)t+90)
12
r(xt)=4% 05, tanh? (x+ 8K3b2t)
0K+ ok + 0,k + thk —dy —ey — (77)
Xei(—lcx+wt+(9(,)
12
q(x,t)=1% 0, coth? (x + 8K3b1t)
oK+ Pk + 0k + ik —d; —e — f (78)
Xei(—l«x+wt+9(, )
12
r(xt)=4% 0, coth? (x +8K3b2Z)
0K+ Prk+ 0K + thK —dy —ey — £ (79)

Xei(_KerwHH" ) .

The solutions (76) and (77) imply dark solitons, while the solutions given by Egs. (78) and (79)
represent singular solitons, with the constraint b, (oyx + Bk + 8,k + pyk —d, —e; — f;) > 0.
Case 2:

0 =—(3x* ~24K> ~16)b;, 4,=0, B =0, B, =0,

. 1205,

B Kal+r<ﬁl+r<5l+r</,tl—d,—el—fl’

\/ 1200, (80)
+

Koy + kP +K0; + Ky —d; — e — f ’

4
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Inserting Eqgs. (80) and (8) into Eq. (46) leads to

q(x,t):iJ 1205,

Kay + kP +Kk0; + Ky —dy —e; — f (81)

x {1 +tanh? (x + 8K3b1t)} ei(_KHa’HQO) ,

r(x,t):ir\/ 1205,

KOy +Kﬁ2 +K52 + Ky —dz —€ —fz (82)

X {1 +-+tanh? (x + 8K3b21)} GlKrrertd,) ,

q(x,t)zi\/ 120,

Koy + kP + K0 + Ky —d; —e; — £ (83)
x {1 +coth? (x + 8K3b1t)} ei(_KHwHG‘)),
P —
KOy + Ky + KOy + Ky —dy —ey — ) (84)

X {1 +coth? (x + 8K3b2t)} Glrxrort)

The solutions (81) and (82) are dark solitons, whereas the solutions (83) and (84) are singular

solitons, with the constraint b, (o + Bk + 8,k + pyk —d; —e; — f;) > 0.

Case 3:
91p
K= ig,a) =—2 4=0,B,=0,4,=0,
- \/_ 11p, ’
Koy + K3 + K6, + K1y —d; —e; — f (85)
By =+ |- 1204 ’
Koy + kP + K6, + K1y —d; —e; — f
¢ = i%\/—l 16, (ko + kB + K6 + Ky —dy —e; — f7).
Substituting Eqs. (85) and (8) into Eq. (46) gives rise to the relations
b
q(x,t) =% |- 1
Koy + kP, + K0, + Ky —dy —e; — £
x{\/ﬁ-i-\/lZOtanh(x+8K3b1t)sech(x+81<3b1t)} (86)
ei(—lcx+a)t+0”)
b
r(x,t)==% |- 2
KQy + Ky + KOy + Kty —dy —ey — />
x{\/ﬁ+\/120tanh(x+8K3b2t)sech(x+8x3b2t)} 87)

Xez'(—mc+6z)tJr0U ) .

The solutions given by Eqgs. (86) and (87) signify combo dark-bright solitons, with the constraint
bl (a1K+ﬂ1K+61K+[LllK—dl —€ —ﬁ) <0.
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Case 4:

305,
Koy +K P +xkS Kk —d —e—f;

30b
B =0, By==|- d : (88)
Koy+xkfB+K6,+Kx 1y —d —e - f

K==

23 47b, 3b (ko +x By +x8 +K 4 —dy—e — f;)
—, 0=——, ¢ =1%17
3 3 40

Inserting Eqgs. (88) and (8) into Eq. (46) leads to

o) = iJ 30b,

Koy + kP + K0 + Ky —dy —e — f

(89)
x {coth2 (x + 8K3b1t) +coth (x + 8K3b1t) csch (x + 81<3b1t)} e[(_“”‘“e‘)),
r(x,t):i\/ 306,
KOy + K05 + KOy + Kty —dy —e5 — f> 90)

X {coth2 (x + 8K3b2t) + coth (x + 8;<3b2t)csch (x + 81<3b2t)} ei(—'fx+wf+90).

The solutions (89) and (90) represent combo singular solitons, with the constraint
bl (a1K+ﬂ1K+51K+[LllK—dl —€ —ﬁ) > 0.
Case 5:

4=0, B =0, o=-(3"-6x-1)b,

. 305
N\ ko + KB+ K6, + K1y —dy —ep — f;
305,
4 == C , 91)
Koy + kP + K0, + Ky —d; —e; — f;
B, =+ |- 305, ,
Koy + k3 +K6; + K1y —d; —e; — f;

3b; (ko + K6 +K0; + Kty —d; —ep —
Cl:i(6K2+5)\/ l( L+ KB R B B fl)
40
Substituting Eqgs. (91) and (8) into Eq. (46) gives

30h,

q(x,t)=1%
Koy + KB + K0 + Ky —d; — e — f; ©2)
x{l +coth? (x + 8K3b1t) +coth (x+ 8K3b1t)csch (x+ 8K3b1t)} e"(—“+wl+90)’
r(x,t):i\/ 306,
KOy + Ky + K0y + Klly —dy —ey — [ 93)

X {1 +coth? (x+ 8K3b2t) + coth(x + 8K3b2t)csch (x+ 8,(3[92;)} Gorxror6,)

The solutions (92) and (93) imply combo singular solitons, with the constraint
bl (a1K+ﬂ1K+51K+[LllK—dl —€ —ﬁ) > 0.

Ukr. J. Phys. Opt. 2021, Volume 22, Issue 4 267



Yakup Yildirim et al

4. Conclusion

We have reported for the first time the CQ solitons emerging from the governing NLSE which
maintains the QC nonlinearity. Our model has been considered in both polarization-preserving and
birefringent fibres. Moreover, we consider the alternative cases of present or absent perturbation terms.
These terms are of Hamiltonian type and, hence, they do not affect integrability of the model. A whole
spectrum of the soliton solutions has emerged in the frame of sine-Gordon equation approach adopted
by us. All of those solutions have been enumerated and discussed in brief.

The shortcoming of the above approach is that it has failed to retrieve a much-needed bright-
soliton solution. Note that the latter would have served as a very important solution of the model,
which can be potentially applied with reference to optical fibres, photonic-crystal fibres, meta-
materials and some other waveguide types. Thus, our pending assignment is to retrieve the bright-
soliton solutions of the model, using additional approaches which would enable moving further
along with this model. These approaches should include establishing conservation laws, addressing
the aspect of optical-soliton cooling, implementing a variational principle to recover dynamics of
soliton parameters, applying a Laplace—Adomian decomposition scheme for studying the model
numerically, applying a symmetry method, and some others techniques (see Refs. [16-25]).

Disclosure. The authors declare no conflict of interest.
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Anomauin. Bnepuie susgneno KyoOiuHO-KEAPMUYHI ONMUYHI CONIMOHU 3 KBAOPAMUYHO-KYOIYHOI
Heninitnicmio. Po3ensinymo ax noasipu3ayiini 6010KHA, MAK i 60N0KHA 3 NOOGIHUM 3ATOMIAEHHAM.
JlocniosceHnss maxkoc po3uupeHo Ha 8UNA0OK po32ifioy uieHie 30ypeHHs 2aMilbIMOH08020 MUNY.
Aneopummom inmezpy8anis, NPUUHAMUM Y Yill podomi, € Memoo pieHanHsa cunyc-1 opooua.
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