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Abstract. We reveal cubic–quartic optical solitons with quadratic–cubic 
nonlinearity for the first time. Both polarization-preserving and birefringent optical 
fibres are considered. The study is also extended to include the perturbation terms of 
Hamiltonian type. The integration algorithm adopted in the present work is the 
method of sine-Gordon equation.  
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1. Introduction 
Studies of dynamics of optical solitons have transformed telecommunication engineering beyond 
comprehension. Today the appropriate technologies are widely applied in many braches, e.g. in 
Internet communication. Recent successes in quantum optics have also made some modern-day 
technological marvels a reality. A delicate balance between chromatic dispersion and self-phase 
modulation is one of the key factors that need to be sustained for a smooth transmission of soliton 
pulses across inter-continental distances. This is not always ensured. One possible reason is that 
the chromatic dispersion could run low. In such a situation, the common chromatic dispersion gets 
replaced by a combination of third- and fourth-order dispersions, which would together 
compensate for its low count.  

In the present work, we will handle a governing nonlinear Schrödinger equation (NLSE) that 
comes with a combination of third- and fourth-order dispersions, which would yield cubic–quartic 
(CQ) solitons. A self-phase modulation in this model is set to be associated with a quadratic–cubic 
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(QC) form of the nonlinear refractive index. It should be marked that the optical solitons appearing 
under the condition of QC nonlinearity law have already been considered by using different 
integration methods [1–15].  

The optical solitons with the QC nonlinearity and nonlinear perturbation terms have been 
studied with a semi-inverse variational principle [1], a method of undetermined coefficients [2] 
and a hypothesis of travelling waves [3]. Chirped optical Gausson solitons with the QC 
nonlinearity have been found in the presence of perturbation terms with the aid of collective-
variables approach [4]. The structure and dynamics of one-dimensional binary Bose gases forming 
quantum droplets have been touched upon by solving a relevant amended Gross–Pitaevskii 
equation [5]. Optical-soliton cooling under QC nonlinearity has been reported in Ref. [6]. CQ 
optical solitons in the birefringent fibres with Kudryashov’s law for the nonlinear refractive index, 
which have three special cases of the power-law nonlinearity parameters, have been addressed [7], 
using an extended trial-function algorithm. Chaotic solitons under managed QC nonlinearity have 
been yielded within the NLSE [8]. A single terahertz electromagnetic pulse has been found to have 
unique features in the presence of both second- and third-order nonlinearities [9]. Kink solitons in 
the QC nonlinear dispersive media have been discussed in Ref. [10]. Soliton solutions for the 
optical fibres made of QC nonlinear media have been obtained by virtue of a complex ansätze 
approach [11]. Moreover, optical solitons and conservation laws for the case of QC nonlinearity 
have been obtained [12]. CQ optical solitons have been found with the QC NLSE for four different 
non-Kerr nonlinearities, using a unified method of Riccati-equation expansion [13]. Bright, dark 
and singular optical solitons for the case of Kudryashov’s sextic power-law nonlinearity of 
refractive index have been obtained with a unified Riccati-equation method, a mapping scheme 
and a supplemented Kudryashov’s algorithm [14]. Finally, CQ optical solitons have been revealed 
in the polarization-preserving fibres with five different nonlinear refractive-index structures, using 
a perturbed complex Ginzburg–Landau equation and a supplemented Kudryashov’s approach [15]. 

The QC form of the self-phase modulation mentioned above has been first proposed in 1994 
and then resurfaced in 2011 (see Refs. [8–10]). Subsequently, a plethora of research results have 
been reported for such a nonlinear form of refractive index [1–7, 11, 12]. After that the concept of 
CQ solitons has come and gained a lot of attention of researchers. A number of prominent results 
have made it visible all across with a variety of models to address the soliton dynamics in optical 
fibres [13–15].  

In the present work we combine the concept of CQ solitons to be studied with the QC 
nonlinearity. Namely, we formulate the governing NLSE and derive its solutions with the aid of 
sine-Gordon equation approach. This NLSE is modelled for the first time in the cases of 
polarization-preserving and birefringent fibres, both in the presence and absence of perturbation 
terms. Moreover, we report for the first time a complete spectrum of soliton solutions, which 
emerge from this integration scheme. The main results of our study will be displayed after a brief 
introduction to our model. 

2. Polarization-preserving fibres 
In this section we address the CQ-NLSE for the case of QC nonlinearity in the polarization-
preserving fibres. 

2.1. Unperturbed model 
The unperturbed CQ-NLSE with the QC nonlinearity in the polarization-preserving fibres reads as 
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1 2 0t xxx xxxxiq iaq bq c q c q q     ,         (1) 

where x  and t  are the dimensionless distance and time, respectively. The first term in the Eq. (1) 
refers to the linear temporal evolution, the complex-valued function  ,q x t  represents the optical 

solitons in the polarization-preserving fibres, a  and b  are the constant coefficients of respectively 
third- and fourth-order dispersions, the constant coefficients 1c  and 2c  constitute the QC 

nonlinearity, and 1i   .  
To obtain the optical solitons from the unperturbed CQ-NLSE with the QC nonlinearity in 

the polarization-preserving fibres, we assume the travelling-wave transformation 

     

 

,

0

, ,  ,

, ,

i x tq x t U e x vt

x t x t

 

   

  

   
    (2) 

where the constants  , ,  v   and 0  represent the wave frequency, the velocity, the wave number 

and the phase constant, respectively. Here the real-valued functions  U   and  ,x t  stand 

respectively for the amplitude and phase components of the soliton. After substituting Eq. (2) into 
Eq. (1), one obtains a fourth-order ordinary differential equation 

   2 4 2 3
1 26 3 0,ivbU b U b U c U c U           (3) 

along with the constraints 
4 ,a b      (4) 

38 ,v b       (5) 

where the notations ' ,d
d

  
2

2'' d
d

  and  
4

4
iv d

d
  are used.  

Eq. (3) can be integrated to determine the soliton profile, while Eq. (5) gives the soliton 
velocity. According to the approach of sine-Gordon equation, Eq. (3) yields a formal solution 

          1
0

1
cos sin cos

N
i

i i
i

U V B V A V A   



       (6)  

along with the ordinary differential equation 

    sin ,V V        (7) 

and the exact solutions 

         
         

sin sech , sin icsh ,

cos tanh , cos coth .

V V

V V

   

   

 

 
    (8) 

Here  V   is a new positive function of  , iA  and Bi are the constants, and the integer N  can be 

identified by applying a balance principle between the nonlinear term and the highest-order 

derivative term. Balancing  ivU  with 3U  in Eq. (3) gives 2N  . Thus, Eq. (6) transforms into 
the solution 

       
         

0 1 1

2 2

sin cos

co sin cos s .

U A B V A V

V B V A V

  

  

  

 
        (9) 
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After inserting Eqs. (9) and (7) into Eq. (3), one can arrive at the following results. 
Case 1: 

1 1 0 2
2

2 1 2
2

110, 0, , 0, 

120 15 91 , 3 11 , , .
3 3

bA B A A
c

b bB c bc
c

 

    

       

 (10) 

Substituting Eqs. (10) and (8) into Eq. (9) results in 

        03 3

2
, 11 120tanh 8 sech 8 .i x tbq x t x b t x b t e

c
             (11) 

The solution given by Eq. (11) implies a combo dark-bright soliton, along with the corresponding 
constraint 2 0.bc   
Case 2: 

   

1 1 0 2 2
2 2

2 4 22
1

120 1200, 0, , , 0,

63 10 , 3 24 16 .
5

b bA B A A B
c c

bcc b   

        

       

  (12) 

Inserting Eqs. (12) and (8) into Eq. (9) leads to 

      02 3

2

120, 1 tanh 8 ,i x tbq x t x b t e
c

             (13) 

      02 3

2

120, 1 coth 8 .i x tbq x t x b t e
c

             (14) 

The solutions given by Eqs. (13) and (14) display respectively dark and singular solitons, along 
with the constraint 2 0.bc   
Case 3: 

   

4 2

1 2 0 2
2 2

4 2
2

1 2 1 2

2 8 2 6 2 4 2 2

2 2

120 3 12 88 50, , ,
63 10

33 120 40 5 0,  0,  ,
103 10

117 936 1176 24 4800 120

4480 280 5 0.

b b b bA A A
c bc

cb b bB B c
b

b b b b b b

b b

  


  


     

 

  
      



  
    



     

   

  (15) 

Substituting Eqs. (15) and (8) into Eq. (9) gives 

     0

4 2
2 3

2
2 2

3 12 88 5 120, tanh 8 ,
63 10

i x tb b b bq x t x b t e
bc c

     


            
  

 (16) 

     0

4 2
2 3

2
2 2

3 12 88 5 120, coth 8 .
63 10

i x tb b b bq x t x b t e
bc c

     


    
 
 

  
     

 
 (17) 

The solutions (16) and (17) represent dark and singular solitons, respectively, with the constraint 

2 0.bc   
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Case 4: 

   

1 1 0 2 2
2 2 2

2 4 22
1

30 30 300, 0, , , ,

36 5 , 3 6 1 .
10

b b bA B A A B
c c c

bcc b   

         

       

  (18) 

Inserting Eqs. (18) and (8) into Eq. (9) leads to 

        
 0

2 3 3 3

2

30, 1 coth 8 coth 8 csch 8

.i x t

bq x t x b t x b t x b t
c

e   

  

  

       



 (19) 

The solution (19) signifies a combo singular soliton with a constraint 2 0.bc   

2.2. Perturbed model 
The perturbed CQ-NLSE with the QC nonlinearity in the polarization-preserving fibres is 
structured as 

     2 2 2 2
1 2 ,m m m

t xxx xxxx x
x x

iq iaq bq c q c q q i q q q q q q           
 (20) 

where   is the coefficient of self-steepening nonlinearity,   and   denote the coefficients of 

higher-order dispersion effects, and m  stands for the overall nonlinearity exponent. Substituting 
Eq. (2) into Eq. (20) leads to the ordinary differential equation 

     2 4 2 3 2 1
1 26 3 0,iv mbU b U b U c U c U U               (21) 

with the constraints 
4 ,a b        (22) 

38 ,v b         (23) 
2 2 0.m m            (24) 

Eq. (21) admits Eq. (9). Inserting Eqs. (9) and (7) into Eq. (21) gives rise to the following 
results. 
Case 1: 

 

0 1 1 2

2
2 1

2

0, 0, 0, 0,

2 3 2001, , ,
3 3

16 30   120 ,  .
5

A A B B

bm

b cbA c
c

 

 

 

   

   

 
   

 

  (25) 

Substitution of Eqs. (25) and (8) into Eq. (9) results in 

     02 3

2

120, tanh 8 ,i x tbq x t x b t e
c

  
 

    
 

   (26) 

     02 3

2

120, coth 8 .i x tbq x t x b t e
c

  
 

    
 

   (27) 

The solutions given by Eqs. (26) and (27) represent respectively dark and singular solitons, with 
the constraint  2 0.b c     
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Case 2: 

     

1 2 1

0 2
2 2

2
24 2

1

0, 0,  1, 0,

120 120, , 

3 10 30
3 24 16 , .

5

B B m A

b bA A
c c

b c
b c

   

  
  

   

   
   

  
     

  (28) 

Inserting Eqs. (28) and (8) into Eq. (9) leads to 

      02 3

2

120, 1 tanh 8 ,i x tbq x t x b t e
c

  
 

     
 

          (29) 

      02 3

2

120, 1 coth 8 .i x tbq x t x b t e
c

  
 

     
 

          (30) 

The solutions given by Eq. (29) and (30) mean respectively dark and singular solitons, under the 
constraint  2 0.b c     

Case 3: 

 

1 1 2

0 2
2 2

1 2

150, 0,  0, 1, ,
3

11 120,  ,

913 11 , .
3

B A A m

b bA B
c c

bc b c



   

  

     

     
   

      

         (31) 

Substitution of Eqs. (31) and (8) into Eq. (9) yields the results 

      
 0

3 3

2
, 11 120tanh 8 sech 8

.i x t

bq x t x b t x b t
c

e   

 
 

  

     
 

  

(32) 

The solution (32) is a combo dark-bright soliton appearing under the constraint 
 2 0.b c     

Case 4: 

 

0 1 1

2
2

2
2 1

2

1, 0, 0,  0,

2 3 47 30 , , ,
3 3

330 , 17 .
10

m A A B

b bA
c

b cbB c
c

 
 

 
 

   

    
 

 
    

 

  
(33)

 

Inserting Eqs. (33) and (8) into Eq. (9) leads to 

        
 0

2 3 3 3

2

30, coth 8 coth 8 csch 8

.i x t

bq x t x b t x b t x b t
c

e   

  
 
  

     
 



    (34) 

The solution (34) signifies a combo singular soliton, with the constraint  
 2 0.b c     
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Case 5: 

 

   

1 1 0
2

4 2
2

2

22
2 1

2

301, 0, 0, , 

303 6 1 , ,

330 , 6 5 .
10

bm A B A
c

bb A
c

b cbB c
c

 

  
 

 


 

    
 

     
 

 
     

 

  (35) 

After substituting Eqs. (35) and (8) into Eq. (9) one derives the solution 

        
 0

2 3 3 3

2

30, 1 coth 8 coth 8 csch 8

.i x t

bq x t x b t x b t x b t
c

e   

  
 
  

      
 



   (36) 

Eq. (36) implies a combo singular soliton, with the constraint  2 0.b c     

3. Birefringent fibres 
Now we proceed to the CQ-NLSE with the QC nonlinearity appearing in the birefringent fibres. 

3.1. Unperturbed model 
Under conditions of the QC nonlinearity arising in the birefringent fibres with four-wave mixing, 
the unperturbed CQ-NLSE can be written in the form 

 2 2 2 2* * 2 *
1 1 1 1 1 1 0,t xxx xxxxiq ia q b q c q q r qr q r d q e r q f r q           (37) 

 2 2 2 2* * 2 *
2 2 2 2 2 2 0,t xxx xxxxir ia r b r c r r q rq r q d r e q r f q r           (38) 

where the complex-valued functions  ,q x t  and  ,r x t  account for the optical solitons in the 

birefringent fibres. At 1, 2l  , la  and lb  stand for the coefficients of third- and fourth-order 

dispersions, respectively, ld  represent the coefficients of self-phase modulation, le  are the 

coefficients of cross-phase modulation, and lf  are the coefficients of four-wave mixing. For the 

coefficients lc , the first two terms purport respectively the self-phase modulation and the cross-
phase modulation, while the last two terms depict the four-wave mixing inside the radical function.  

To obtain the optical solitons in the birefringent fibres with the unperturbed CQ-NLSE and 
the QC nonlinearity, we assume the following travelling-wave transformations: 

           

 

, ,
1 2

0

, , , , 

, , .

i x t i x tq x t U e r x t U e

x vt x t x t

  

    

 

     
  (39) 

Substitution of Eq. (39) into Eqs. (37) and (38) leads to the real part 
     2 '' 4 3

2 3 2 2

3 6

0,

iv
l l l l l l ll

l l l l l l l l l ll l l

b U a b U b a U

c U c U U d U e U U f U U

        

       

  (40) 

and the imaginary part 

   ''' 3 2 '4 4 3 0,l l l l l la b U b v a U          (41) 
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where 1, 2l   and 3 .l l   Eqs. (40) and (41) can be reduced to the ordinary differential equation 
     2 '' 4 2 36 3 2 0,iv

l l l l l l l l l l llb U b U b U c U d e f U            (42) 

under the constraints 
,llU U       (43) 

4 ,l la b       (44) 
38 .lv b       (45) 

Balancing  iv
lU  with 3

lU  in Eq. (42) gives the value 2N  . Hence, Eq. (6) has the solution 

                 0 1 1 2 2sin cos cos sin cos .l l l l l lU A B V A V V B V A V           (46) 

Inserting Eqs. (46) and (7) into Eq. (42), one obtains the following results. 
Case 1: 

 

0 1 1

2 2

2002 3 , , 0, 0, 0,
3 3

6120
, 0,  8 .

5

l

l l l ll
l

l l l

b
A A B

b d e fb
A B c

d e f

      

 
      

 

  (47) 

After substituting Eqs. (47) and (8) into Eq. (46) one gets 

     02 31
1

1 1 1

120, tanh 8 ,i x tbq x t x b t e
d e f

        
 

   (48) 

     02 32
2

2 2 2

120, tanh 8 ,i x tbr x t x b t e
d e f

        
 

  (49) 

     02 31
1

1 1 1

120, coth 8 ,i x tbq x t x b t e
d e f

        
 

   (50) 

     02 32
2

2 2 2

120, coth 8 .i x tbr x t x b t e
d e f

        
 

  (51) 

The both solutions (48) and (49) represent dark solitons, while the solutions given by Eqs. (50) and 
(51) are singular solitons, with the constraint   0.l l l lb d e f    

Case 2: 

 

   

4 2
1 1 2

0 2

2

3 24 16 , 0,  0, 0,

120 120
  , ,

3
3 10 .

10

l

l l

l l l l l l

l l l l
l

b A B B

b b
A A

d e f d e f

b d e f
c

  



      

     
   

 
   

   (52) 

Inserting Eqs. (52) and (8) into Eq. (46) leads to 

      02 31
1

1 1 1

120, 1 tanh 8 ,i x tbq x t x b t e
d e f

         
 

  (53) 

      02 32
2

2 2 2

120, 1 tanh 8 ,i x tbr x t x b t e
d e f

         
 

  (54) 
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      02 31
1

1 1 1

120, 1 coth 8 ,i x tbq x t x b t e
d e f

         
 

  (55) 

      02 32
2

2 2 2

120, 1 coth 8 .i x tbr x t x b t e
d e f

         
 

  (56) 

The solutions (53) and (54) signify dark solitons, while the solutions (55) and (56) represent 
singular solitons, provided that the constraint   0l l l lb d e f    is satisfied. 

Case 3: 

 

0 1 2

1 2

11
, 0, 0, 

120
0, ,

3 1191 15 ,  ,  .
3 3 2

l

l l l

l

l l l

l l l ll
l

b
A A A

d e f

b
B B

d e f

b d e fb
c 

   
 

  
 

 
     

        (57) 

If we substitute Eqs. (57) and (8) into Eq. (46), the relations 

      
 0

3 31
1 1

1 1 1
, 11 120tanh 8 sech 8

,i x t

bq x t x b t x b t
d e f

e   

 

  

    
 



 (58) 

      
 0

3 32
2 2

2 2 2
, 11 120tanh 8 sech 8

,i x t

br x t x b t x b t
d e f

e   

 

  

    
 



 (59) 

follow. The solutions (58) and (59) imply combo dark-bright solitons, with the constraint 

  0.l l l lb d e f    

Case 4: 

 

0 1 2

1 2

30
0, 0, ,

30
0, , 

17 30472 3 , , .
3 3 20

l

l l l

l

l l l

l l l ll
l

bA A A
d e f

b
B B

d e f

b d e fb
c 

    
 

  
 

  
     

   (60) 

Inserting Eqs. (60) and (8) into Eq. (46) leads to 

        
 0

2 3 3 31
1 1 1

1 1 1

30, coth 8 coth 8 csch 8

,i x t

bq x t x b t x b t x b t
d e f

e   

  

  

      
 



 (61) 

        
 0

2 3 3 32
2 2 2

2 2 2

30, coth 8 coth 8 csch 8

.i x t

br x t x b t x b t x b t
d e f

e   

  

  

      
 



 (62) 

The solutions (61) and (62) represent combo singular solitons, with the constraint   0.l l l lb d e f    
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Case 5: 

 

   

0 1 2

4 2
1 2

2

30 30
, 0, , 

30
0, , 3 6 1 , 

3
6 5 .

40

l l

l l l l l l

l
l

l l l

l l l l
l

b b
A A A

d e f d e f

b
B B b

d e f

b d e f
c

  



      
   

      
 

 
   

       (63) 

Substituting Eqs. (63) and (8) into Eq. (46) yields 

        
 0

2 3 3 31
1 1 1

1 1 1

30, 1 coth 8 coth 8 csch 8

,i x t

bq x t x b t x b t x b t
d e f

e   

  

  

       
 



 (64)  

        
 0

2 3 3 32
2 2 2

2 2 2

30, 1 coth 8 coth 8 csch 8

.i x t

br x t x b t x b t x b t
d e f

e   

  

  

       
 



 (65) 

The solutions (64) and (65) are combo singular solitons, with the constraint   0.l l l lb d e f    

3.2. Perturbed model 
Now we consider the perturbed CQ-NLSE with the QC nonlinearity in the birefringent fibres in 
which the four-wave mixing is present: 

 
          

2 2 2 2* * 2 *
1 1 1 1 1 1

2 2 2 2 2 2
1 1 1 1 1 1 ,

t xxx xxxx

x
x x x x

iq ia q b q c q q r qr q r d q e r q f r q

i q q r r q r q q r q     

        

        
 (66) 

 
          

2 2 2 2* * 2 *
2 2 2 2 2 2

2 2 2 2 2 2
2 2 2 2 2 2 ,

t xxx xxxx

x
x x x x

ir ia r b r c r r q rq r q d r e q r f q r

i r r q q r q r r q r     

        

        

 (67) 

where ,l  ,l  ,l  ,l  l  and l   1,2l   are the constant coefficients of the nonlinear terms. 

Substitution of Eq. (39) into Eqs. (66) and (67) leads to the real part 
     

   

2 '' 4 3 2

3 2 3

3 6

0,

iv
l l l l l l l l ll

l l l l l l l l l l ll l l

b U a b U b a U c U

c U U d U e f U U U

    

   

     

          

  (68) 

and the imaginary part 

   
 

''' 3 2 '

2 ' 2 ' ' 2 '

4 4 3

3 2 3 2 0.

l l l l l l l l l

l l l l l l l l l ll l l l l

a b U b v a U c U U

U U U U U U U U U

  

     

    

      



    

  (69) 

Eqs. (68) and (69) reduce to the ordinary differential equation 
   

 

2 '' 4 2

3

6 3 2

0,

iv
l l l l l l ll

l l l l l l l l

b U b U b U c U

d e f U

  

   

   

       
    (70) 
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with the following constraints: 
,llU U       (71) 

4 ,l la b       (72) 
38 ,lv b        (73) 

3 3 2 2 0.l l l l l l              (74) 
Eq. (70) admits Eq. (46). Insertion of Eqs. (46) and (7) into Eq. (70) gives rise to the 

following results. 
Case 1: 

 

0 1 1 2

2

2002 3 ,  ,  0, 0, 0,  0,
3 3

120
, 

6
8 .

5

l

l

l l l l l l l

l l l l l l l l
l

b
A A B B

b
A

d e f

b d e f
c

 

       

       

      

 
     

     
 

   (75) 

Substituting Eqs. (75) and (8) into Eq. (46), one derives the relations 
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The solutions (76) and (77) imply dark solitons, while the solutions given by Eqs. (78) and (79) 
represent singular solitons, with the constraint   0.l l l l l l l lb d e f               

Case 2: 
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Inserting Eqs. (80) and (8) into Eq. (46) leads to 
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The solutions (81) and (82) are dark solitons, whereas the solutions (83) and (84) are singular 
solitons, with the constraint   0.l l l l l l l lb d e f               

Case 3: 
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Substituting Eqs. (85) and (8) into Eq. (46) gives rise to the relations 
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The solutions given by Eqs. (86) and (87) signify combo dark-bright solitons, with the constraint 

  0.l l l l l l l lb d e f               
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Case 4: 
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Inserting Eqs. (88) and (8) into Eq. (46) leads to 
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The solutions (89) and (90) represent combo singular solitons, with the constraint 
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Case 5: 

 

   

4 2
1 1

0

2

2

2

0, 0, 3 6 1 , 

30
,

30
, 

30
,

3
6 5 .

40

l

l

l l l l l l l

l

l l l l l l l

l

l l l l l l l

l l l l l l l l
l

A B b

b
A

d e f

b
A

d e f

bB
d e f

b d e f
c

  

   

   

   

   


     

 
     

 
     

  
     

     
  

  (91) 

Substituting Eqs. (91) and (8) into Eq. (46) gives 
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The solutions (92) and (93) imply combo singular solitons, with the constraint 

  0.l l l l l l l lb d e f               
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4. Conclusion 
We have reported for the first time the CQ solitons emerging from the governing NLSE which 
maintains the QC nonlinearity. Our model has been considered in both polarization-preserving and 
birefringent fibres. Moreover, we consider the alternative cases of present or absent perturbation terms. 
These terms are of Hamiltonian type and, hence, they do not affect integrability of the model. A whole 
spectrum of the soliton solutions has emerged in the frame of sine-Gordon equation approach adopted 
by us. All of those solutions have been enumerated and discussed in brief.  

The shortcoming of the above approach is that it has failed to retrieve a much-needed bright-
soliton solution. Note that the latter would have served as a very important solution of the model, 
which can be potentially applied with reference to optical fibres, photonic-crystal fibres, meta-
materials and some other waveguide types. Thus, our pending assignment is to retrieve the bright-
soliton solutions of the model, using additional approaches which would enable moving further 
along with this model. These approaches should include establishing conservation laws, addressing 
the aspect of optical-soliton cooling, implementing a variational principle to recover dynamics of 
soliton parameters, applying a Laplace–Adomian decomposition scheme for studying the model 
numerically, applying a symmetry method, and some others techniques (see Refs. [16–25]). 
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Анотація. Вперше виявлено кубічно-квартичні оптичні солітони з квадратично-кубічної 
нелінійністю. Розглянуто як поляризаційні волокна, так і волокна з подвійним заломленням. 
Дослідження також розширено на випадок розгляду членів збурення гамільтонового типу. 
Алгоритмом інтегрування, прийнятим у цій роботі, є метод рівняння синус-Гордона. 


