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Abstract. For the first time in the field of nonlinear optics, we address cubic—quartic
solitons appearing in the fibre Bragg gratings with dispersive reflectivity for four
different cases of nonlinear refractive-index structures. A complete spectrum of
single solitons, together with some straddled solitons, emerges from the integration
scheme adopted by us, which is the approach of sine—Gordon equation.
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1. Introduction

The theory of dynamics of optical solitons has left a lasting impact in telecommunications
industry. There are various aspects of soliton science elaborated by the researchers. Soliton
switching, intra-channel soliton collisions, quasi-monochromatic soliton dynamics, optical soliton
cooling and some other topics are among the main points under interest. Another problem which is
not very commonly touched upon is Bragg gratings. This is a very clever remedy to soliton
transmission across intercontinental distances when a chromatic dispersion (CD) runs low. In such
a crisis situation it is gratings that are introduced in an optical fibre that produces dispersive
reflectivity. This ensures a stable propagation of solitons when a necessary delicate balance
between dispersion and nonlinearity is maintained.

Bragg gratings have been addressed by many authors [1-26]. The existence and stability of
quiescent Bragg-grating solitons have been systematically investigated in a dual-core fibre [1]. The
interactions between stable quiescent Bragg-grating solitons in a dual-core system have also been
reported in Ref. [2]. The interaction of quiescent gap solitons in coupled fibre Bragg gratings
(FBGs) with dispersive reflectivity and cubic—quintic nonlinearity in the both cores has been
addressed in Ref. [3]. The authors [4] have proposed and demonstrated experimentally a novel
optimally designed FBG-filter scheme, which is based upon single fibres and designed for the
conversion from RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format. A novel notch-
filtering scheme, which is based on an optimally designed two-degree-of-freedom FBG, has been
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suggested for a transparent all-optical bit-rate NRZ-to-PRZ format conversion [5]. The existence,
stability and collision dynamics of moving Bragg-grating solitons in a semi-linear dual-core
system have been analyzed in Ref. [6]. The existence and stability of quiescent gap solitons in a
system of two linearly coupled Bragg gratings with a cubic—quintic nonlinearity have also been
studied [7]. A hybrid-core circularly cladded photonic crystal fibre has been designed and
analyzed for applications in the terahertz frequency range [8]. The collisions of moving gap
solitons in a system of two identical linearly coupled Bragg gratings with a cubic—quintic
nonlinearity have been a subject of the study [9].

Optical solitons in the FBGs with dispersive reflectivity have been retrieved in the earlier
studies [10, 11]. Bright and singular optical soliton solutions for the FBGs with dispersive
reflectivity for the parabolic nonlinearity have been recovered by an extended trial-function
method [12]. Bright, dark and singular solitons in these FBGs have also been revealed using a
method of undetermined coefficients [13]. Optical solitons in the FBGs with dispersive reflectivity
have also been obtained by the extended trial-function method for the case of quadratic—cubic
nonlinearity [14]. Optical solitons in the mentioned FBGs emerge in the case of cubic—quintic—
septic nonlinearity [15]. Using the extended trial function, bright and singular optical solitons have
been retrieved in the same FBGs for a parabolic-nonlocal combo nonlinearity [16]. Finally, dark
and singular optical solitons in the FBGs with five different forms of nonlinear refractive index
have been found using a modified simple equation [17].

A system of partial differential equations for the moving optical solitons in FBGs has been
studied in Ref. [18]. As follows from the sine-Gordon equation technique, a complete spectrum of
single and straddled solitons emerges in the FBGs with dispersive reflectivity for five different forms
of nonlinear refractive index [19]. Chirped and chirp-free solitons in the FBGs having dispersive
reflectivity with a parabolic form of nonlinearity can be recovered, using a new Jacobi elliptic-
function expansion [20]. Moreover, the same optical solitons have been revealed in the FBGs with
dispersive reflectivity and a quadratic—cubic nonlinearity, basing on a new sub-ODE method [21].
The same sub-ODE approach has yielded in both the chirped and chirp-free optical solitons in the
FBGs having dispersive reflectivity and a polynomial form of nonlinearity [22]. Furthermore, optical
solitons in the same FBGs revealing the mentioned parabolic-nonlocal combo nonlinearity have been
obtained via three prolific integration architectures [23]. Optical solitons in the FBGs with
generalized anti-cubic nonlinearity have been retrieved from an extended auxiliary equation [24].
The authors [25] have studied the optical solitons that arise in the FBGs revealing a Kerr law for the
refractive index. This is due to an extended Kudryashov’s method and a new extended auxiliary-
equation approach. Finally, both dark and singular optical solitons appearing in the FBGs have been
addressed within the Kudryashov’s model in the presence of dispersive reflectivity [26].

At present, another situation comes on board when the CD carries a low count and, hence, a
balance between the CD and the nonlinearity becomes precariously low, being followed by a
possible pulse collapse. In such a situation, the CD gets replaced by a combination of third-order
and fourth-order dispersions. Thus, with Bragg gratings, the dual dispersion terms introduce so-
called third- and fourth-order dispersive reflectivities. In the present study, we introduce the
models for four different structural forms of the nonlinear refractive index, where the CD is
replaced by the third-order and fourth-order dispersions together with the dispersive reflectivity.
The approach of sine-Gordon equation reveals soliton solutions to these four models. A complete
spectrum of solitons emerges within this integration scheme, which is discussed in this work. The
details will be sketched after a brief introduction into our model.
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2. Optical solitons

In this section we address a coupled nonlinear Schrodinger equation for the cases of four different
forms for the nonlinear refractive index in FBGs.

2.1. Kerr law

The structure of the governing model with the Kerr nonlinear refractive index is given by
L 2 2 .
iq, + a1V + Dl + (cl |q| +d, |r| )q +iayq, + Pir=0, (1

i1 +18yq oy + D2G ey + (cz |r|2 +d, |q|2 )r +ioyr, + 9 =0, (2)
where the complex-valued functions ¢(x,7) and r(x, f) signify forward- and backward-propagating
wave profiles, while x and ¢ are the non-dimensional distance and time in dimensionless form
respectively. The first terms reflect a linear temporal evolution, i = /-1, a; and b; (I =1, 2) imply the
coefficients of respectively the third- and fourth-order dispersions, and ¢; and d, the coefficients of
respectively self-phase modulation (SPM) and cross-phase modulation (XPM). Note also that ¢; and
f3, imply the coefficients referred respectively to inter-modal dispersion and detuning parameters.

To obtain optical solitons for the FBGs described by Egs. (1) and (2), we assume the
following travelling-wave transformations:

o(50) =U (), (1) =Us (£)e, o
E=x—wt, @(x,1) = —kx+ 0t +6),

where the real-valued functions ¢(x,¢) and U (5) stem respectively from the phase and

amplitude components of the soliton, while the real constants 6,, k¥, @ and v denote the phase

constant, the wave number, the frequency and the velocity, respectively.
Substituting Eq. (3) into Egs. (1) and (2), one obtains the real part which is a fourth-order
ordinary differential equation (ODE),

) 4 (3xa =618, U7 +(By =1 + b, Uy + U +dUUF =0, (4)
and the imaginary part which is a third-order ODE,

(@ — 4Kty )UF +(c =v)U; + (4t =3x%a )U; = 0. (5)
. . . od , d? (iv) AR ~
Here the following notation is used: '=—, "= — =— [=1,2,and [ =3-/. Egs. (4)
dé dé dé
and (5) reduce to the ODE
blUl(iv) + 6K2blUl“ + (Kal - +ﬁl —3K4bl )Ul + (Cl + dl )Ul?’ =0 , (6)
with the soliton velocity
v=a, -8kb, (7)
and the constraints
U; =U,, (®)
al = 4K'bl. (9)
Eq. (6) holds a formal solution
N .
Uy (&)= cos'™ (¥, (&))[B; sin(V; (&) + Aicos (¥, (£) ]+ 4, (10)
i=1

along with the ODE
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v () =sin(¥(¢)). (11)

and the exact solutions
sin (¥, (£)) =sech (&), sin(¥;(&))=icsch(&),
cos(V;(&))=tanh (&), cos(V;(&))=coth(&),

where V] (5) is a new positive function of & . The balance number is given by the integer N, and

(12)

4; and B; are constants. Balancing Ul(iv) with U,3 in Eq. (6) gives N = 2. Thus, Eq. (10) yields
the solution
U; (&) = 4y + Bysin (77 (£)) + Aicos (¥ (£))+cos (7, (£))( Bosin (¥, (&) + Aycos (77 (£))) . (13)
Inserting Egs. (13) and (11) into Eq. (6) gives rise to the following results:

J15

K=iT, A():O, A] =O,A2 =0, B] =0,

(14)
5, =12 | 3% ’alzix/E(Sb,+3ﬁ,—3w).
cl+dl 15

Substituting Egs. (14) and (12) into Eq. (13) yields the combo dark-bright solitons
30, 3 3 i(—Kkx+01+6,)
x,t)==%2 tanh( —|oy =8k t)sech( —|oy — 8k t) o, 15
Q( ) ’,c1+d1 X (1 bl) X (1 bl) € (15)

tanh (x - (a2 - 8K3b2 )t) sech (x - (a2 - 81<3b2 )t) ) , (16)

with
bl (Cl +d1)>0,

and the combo singular solitons

q(x,t)=+2 |- c?ibclll coth (x —(al —8x3h, )t)csch (x - (al ~81hy )t)ei(f'(ﬁww”) Y
r(x,t) =12 |- 306 coth (x —(a2 —8r<3b2 )t)csch (x—(a2 —8r<3b2 )t)ei(fkﬁww”) , (1)
(&) +d2

bl(cl+dl)<0.

with

2.2. Parabolic law

The governing model with the parabolic nonlinear refractive index can be written as

iqt +ia1rxxx +b1rxxxx +(cl |Q|2 +d1 |I’|2)q+(/11 |Q|4 + 4 |Q|2 |"'|2 +§l |I"|4)q+iaqu +ﬂlr =0 s (19)

L 2 2 4 20 2 4 .
iy + 30+ o+ (2 |+l ) (2ol o o + ol )+ tar, + Brg =0 20)
where ¢; and 4, are the coefficients of SPM, while d;, y; and £, represent the coefficients of

XPM. Substituting Eq. (3) into Egs. (19) and (20) yields the real part
v 2 " 3 4

blUlgl ) +(3K‘al — 6K bl)Ul" +(Kal —CO)U] +(ﬂl —Kq + K bl)Ui (21)
+qU} +d,U U7 + 4U; + wULUR +&U,UF =0,
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and the imaginary part
(a — 4Kty )UF +(c =v)U; + (4t =3x%a )U; = 0. (22)
Egs. (21) and (22) reduce to the ODE
blUl(iv) + 6K2blUl“ +(Kal —a)+[3'l _3K4bl)Ul +(Cl +dl)Ul3 +(//{l +/ll +§I)U15 = 0, (23)

with the constraints

U; =U, (24)
a; = 4iby (25)
v=a; -8kb . (26)

Balancing Ul(iv) with U, 15 in Eq. (23) gives N = 1. Thus, Eq. (10) has the solution
U, (&) =B sin(V;(£))+ Acos(V;(£))+ 4, . (27)
Inserting Egs. (27) and (11) into Eq. (23) gives rise to the following results:

Case I:
AO :O, Bl :O,

3 2 2
b Koy —o+ f3 4 =i2\/_ 3k a; —3k“w+ 3k f; —10xa; +100—105;

Pkt 122 - 167 3icte, +3x*d) +126% ¢ +12k%d, —16¢; -16d,

¢ =- 1

2
2(3x <10) (xy 0+ ;)
(28)
(181> 02y +18 oy 1y — 18k ) 18K 0 11y + 18 By 2, +18i* B 11y +9x* ¢/
+18k*¢,d, +9x* d)? —120i oy 4y — 1206 ey 1y +120% 0 A, +120K% 0 1y =120k B, 2
—120K By + 36K ¢ + T2 %¢yd; +36K2dy* +200k0 4y + 200K 1
~20002; — 20001, + 200, — 48¢,> + 200,11, —96¢,d; —48d,?).

Substituting Egs. (28) and (12) into Eq. (27) yields the dark solitons

g(xt)=£2, |- 3% — 3 0 +3x” B —10ka; +100 108,
T 3kte +3k4d, + 122 + 12k d, 166, — 16d, 9)

xtanh (x - (al _ 8,(31)1 )t) ei(*KX+a)t+00 ) ’

r(xt)=%2 |- 3cay =36 @+ 3K B, — 100t +100-10,
T 3ty 360 dy +126 e, +1262d, — 160, —16d, (30)

xtanh (x - (az _ 8K3b2 )I) ei(*Kx+a)t+00)’

and the singular solitons

g(xt)=£2, |- 33 ay 32w+ 3k B — 10k, +100—105,
V3o 3kt + 1260 + 126 dy ~ 166, - 164 31)

xcoth (x - (a1 ~8ik°hy )t) glrxrortd, ),
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(x,0)=%2 |- 3 ey =36 @ +3K% B, — 100t + 10010,
N\ 3k, +3x%d, +12k%¢, +12k%d, — 16¢, —16d, (32)

xcoth (x - (az - 8K3b2 ) t) ei(ikijwthaU ) 5

with
(31(30(,—3r<2a)+3r<2ﬁ,—101<a,+10a)—10ﬁ,)
x(3%e; +3x%d; +12% +126°d; ~16¢,~16d; ) < 0.
Case 2:
3 2 2
dy =0, 4, =0, b = KOZ —w;ﬂ, . B = 3k ;1, —3K4a)+3rc zﬂl +5K0;,—5a)+5ﬂ1’
3k" —6K° —1 3k Cl+3K dl—6K Cl—6K dl_cl_dl
1
¢ =- (18 a2y +18K a1y —181(40)/11 —18K4a),ul

y \2
2(3r< +5) (kety —+ ;)
+18x4 B2, +18i By 1ty +9x e +18x% ¢yd) +9x* d)? + 601 0 4y + 60>ty 1y (33)
~60K> w2 — 60Ky + 60K By, + 60K B 1y —18ic%c,? —361%¢yd, —18i>d)
+50K‘alﬂ1 + SOKal‘Lll — SOCOA«I - SOCOIUI + 50[3111 + Soﬂlﬂl —3012 - 6cldl - 3d12 )
Inserting Egs. (33) and (12) into Eq. (27) yields the bright solitons

g(xi)=+2 3K3a1 —3K20)+3K2ﬁ1 +5Kk0 =50+ 5
’ - 3’(401 +3K4d1 —6’(201 —6K2d1 —C —d1 (34)

xsech (x - (a1 ~8k°h, )t)ei(kamtw” ),

(v.r)=2 3K3a2 —3K20)+3K2ﬁ2 +5Kk0t, =50 +5p,
N 3’(402 +3K4d2 —6’(202 —6K2d2 —Cy —dz (35)

xsech (x - (az ~8ik°h, )I)ei(fkﬁmw" ) ,
with
(31(30(1 —3r<2a)+3r<2ﬁl + 5k q —5w+5ﬁ1)>< (3K4Cl + 31<4dl —61('26‘1 - 6K2dl —¢ —d, ) >0,
and the singular solitons

(v.r)=2 3K3a1 —3K20)+3K2ﬁ1 +5Kk0 —Sw+ 5
N 3’(401 +3K4d1 —6’(201 —6K2d1 - —d1 (36)

xcsch (x - (az - 8k3 b, )t)ei(kamtw” ),

(v.f)=2 _31(30!2 —3K20)+3K2ﬁ2 +5ka, —50+50,
- 3’(402 +3K4d2 —6’(202 —6K2d2 —C —d2 (37)

xcsch (x - (az - 8k3 b, )t) orxrorsd, ),

with
(3K3a, —3w+3K2 B + 5Ky —50)+5ﬂ,)><(31c4cl +3xd; — 6K, —6x%d, — ¢ —d)l <0.
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Case 3:

A():O, blz

Koy —w+ B 4= |- 6K3a,—6r<2a)+6rc2ﬂ,—51ca,+5a)—5ﬂ,
3t 432 -1 61(401 + 6r<4dl +6K2cl +6K2d, —2¢; -2d, ’

B+ 6K3a, —6K2a)+6rc2ﬂ, —Sxa; +50-5p;
1~ — s
6K4Cl +6K4dl +6KZCI +6K2dl —201 _2dl

1
&= . (36K, A, + 36K a1y — 36K w4, — 36K 0 1, (38)
(61(2 —5) (ko —w+ )
+36K* B4, + 36K By +18k4 e, + 36K  ¢yd, +18k4d? — 60K oy 4y — 60K oy 1y
+60K% A, + 60k oy — 60> B4 — 60K By 1y +18k2¢,* +36K%¢,d, +18Kk2d,*
+25K‘alﬂ,l +25Kal‘l.ll —256021 —2560/.11 +25ﬂlﬂ‘l +25ﬂl/ll —6012 —1201611 —6d12)
Substituting Eqgs. (38) and (12) into Eq. (27) causes the combo singular solitons
q(x t)— 4 61(30:1 —6K20)+6K2ﬁ1 —5ka; +50-5p
T bicte 6t + 6% e + 62 dy — 2¢, - 2d, (39)
><(coth (x - (a1 - 8K3b1 )t) +csch(x - (al - 8K3b1 )t))ei(kamtw”),
r(x t) i 6K3Ot2 —6K20)+6K2ﬁ2 —5koty +50—-5p,
TN eite, + 6ty + 6%, +6K%dy —2¢, —2d, (40)
><(coth (x - (a2 —8K3b2 )t) +csch (x - (a2 —81(3192 )t))ei(kamﬁe”),
with
(—6K3a, + 6K — 61(2[3, +5xa; — 5w+ 50 )
><(6r<4cl + 6r<4dl +6K2cl +6K2d, -2¢ —2d)l <0.
Case 4.
6 4] + dl 9] + dl
30 (12w +133h, —12
o =J_r*/_( o I ﬂz)’ @1)
! 60
_ 75b]2«l + 75bl:“l —2012 _4cldl —2d12
¢ 75b, .
Inserting Egs. (41) and (12) into Eq. (27) produces the combo dark-bright solitons
1 i(—
q(x,t) =% |- S (tanh (x—(oz1 —8r<3b1 )t)+sech (x—(al —8r<3b1 )t))el( KHMHQ"), (42)
6] +d1
15b, 3 3 i(—xx+ot+6,)
r(xt)=4% ——(tanh(x—(a2 -8k bz)t)+sech (x—(a2 -8k bz)t))e ), (43)
(&) +d2
with
bl (Cl +dl)<0'
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2.3. Quadratic—cubic law

The governing model with the quadratic—cubic nonlinearity of the refractive index is structured as

iq, +ia 7 + D +clq\/|q|2 +|r|2 + qr* + q*r + (dl |q|2 +e |r|2 )q + llrzq* +iayg, + fir=0,(44)

it +iayq e ¥ 020G oy + czr\/|r|2 +|q|2 + qr* + q*r + (d2 |r|2 +e, |q|2)r + ﬂzqzr* +iayr, + Brg =0, (45)
where d; and ¢, are the coefficients of respectively SPM and XPM, and A, stand for the

coefficients of four-wave mixing. In the case of quadratic nonlinearity, ¢, represent the coefficients
of SPM and XPM, along with four-wave mixing.
Substituting Eq. (3) into Egs. (44) and (45) leads to the real part

b,Ulgiv) +(3r<a, —6r<2b,)U} +(koy — @)U,

(46)
+(;<4b, —Ka; + )Ui +q U} +qUUs +dU} +(ep+2, ) UUS =0,
and the imaginary part
(a — 4Kty )UF +(cy =v)Up + (4t =3%a U = 0. (47)

Egs. (46) and (47) reduce to the ODE
blUl(iv) + 6K2blUl“ + (Kal -+ [)’l —3K4bl )Ul + 2CIU12 + (dl + € +)Ll )Ul?’ = 0, (48)

with the constraints

U; =U;, (49)
a, = 4K'bl N (50)
v=a; -8kb . (51)

Here Eq. (48) admits Eq. (13). Inserting Eqgs. (13) and (11) into Eq. (48) gives rise to the
following results:

Case I:
30p A0, 41| 305,
dl+el+ll dl+el+)bl
B =0, B,=0, f=3k"h 24K’ —Ka; +w—16b, (52)
(3% +10) =308, (d; +¢ + 7 )
Clzi 10 .

Substituting Egs. (52) and (12) into Eq. (13) yields the dark solitons

q(x,t) =42 _&{1 + tanh? (x—(al —8r<3b1 )t)} ei(f'(xmtw"), (53)
dl +61 + ll

r(x,t)=%2 f_& {1 + tanh? (x—(a2 —8K3b2)t)} ei(f'(xmtw"), (54)
d2 +ep + ﬂQ

and the singular solitons

q(x,t) =42 __ 30 {1 +coth? (x —(al —8r<3b1 )t)} ei(f'(xmtw"), (55)
dl +e1 +ll
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r(x,t)=1%2 __ 306, {1 + coth? (x—(a2 ~8«c3h, )t)} ei(ﬂ«xmner,)’
d2 +e +ﬂQ

bl(dl+el+2«l)<0.

11
dl+el+ﬂl dl+el+il

1530 +915, -3 ———————
K‘:iﬁ’ alzir( “or ! ﬁl), Clzi% 1lbl(dl+el+ll)

3 15
Inserting Egs. (57) and (12) into Eq. (13) yields the combo dark-bright solitons

o) (o1 - )

i(—kx+wt+6,)

with

Case 2:

xe ,

r(xt)=4% /dz:(jﬁ {\/ﬁi 2+30tanh (x —(a2 ~8k°h, )t)sech (x—(az -8k°b, )t)}

Xei(ka+a)t+60 ) ’

with the constraint
bl (dl +el +2’l) >0.

Case 3:

305, 306,
——,Az =x —_——,
dl+el+il dl+el+2«l

2
B=0B, =+ |— 1 40K +5J—3@(%41?+%),
dl+el+il 2 10

ﬁl = 3K4bl —6K2bl —Kal +C()—bl.
Substituting Egs. (60) and (12) into Eq. (13) reveals the combo singular solitons

__ 30
d] +61 +A«1

A] =0,

q(x,t):ir

><{1+coth2 (x—(oq —8K3b1)t)+coth(x—(a1 —8K3b1 )t)csch(x—(oq —81(31)1)1‘)}

Xei(ka+a)t+60 ) ’

r(xt)=4% L
d2 +ez +AQ

><{1 +coth? (x - (a2 - 8K3b2 )t) +coth (x - (az - 81(31)2 )t)csch (x - (a2 —81(3[)2 )t)}

i(—kx+at+6,)

xe ,

with
bl (dl +el +2’l)<0'

(56)

(57)

(58)

(59)

(60)

(61)

(62)
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Case 4:

304,
Ay=0,4 =0, 4 =42 |[-——L— B, =0, B, =0,
dl+el+il

(63)
2 384b, (d; +e; + A
ﬂl=2\/§a1+w— OOb’,KzJ_rzﬁ, cl=i\/— 1(1 (<] 1).
3 3 3 5
Inserting Egs. (63) and (12) into Eq. (13) yields the dark solitons
30, 2 3 i(—Kkx+0t+6,)
x,t) =22, |-———tanh? (x (&, ~8x; )1 )e ), 64
g(xt)=22 20 (o —85h) (64)
r(x,t)=+2 L B (x—(a2 ~8k7b, )t)e"(*’“”“’”"ﬂ), (65)
d2 +ep + ﬂQ

and the singular solitons

|__ 30h 2( 3 )
=42 [-———coth - —8k7b, |t
q(x,t) ) coth” (x (al K 1) (66)

i(—Kkx+0i+6,
xe ,

)
B 305, 2 3
r(x,t)—iZ —m()oth (x—(a2 -8k bz)t) (67)

Xei(—lcx+wt+0,,)
with
bl (dl +el +2’l)<0'

Ay=0,4=0,4, =+ _&’ B =0,B,=+ &
dl+el+il dl+el+ll

4 867b; (d; +e,+
K=i¥,ﬂl=i2\/§al+w— Zbl,clzi\/_ l( ;Oel l).

Substituting Egs. (68) and (12) into Eq. (13) produces the combo singular solitons

__ 30,
d] +61 +)L]

Case 5:

(68)

q(x,t):ir

><(coth2 (x—(oq —8x°hy )t)+ coth (x—(oq —8k°hy )t)csch (x—(oq —8k°b, )t)) (69)
)

i(—xx+t+6,
xe ,

r(xt)=4% L
d2 +ez +AQ

><{coth2 (x —(a2 —8x°b, )t) + coth (x - (az —8x°b, )t)csch (x - (a2 ~8k°>b, )t)} (70)
)

—KX+0t+0,

E

xe'l
with bl (dl +el +2’l)< 0.

2.4. Parabolic-nonlocal combo law

The governing system with the parabolic-nonlocal combo nonlinear refractive index is given by
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ig, +iar + b7y + (‘71 |q|2 +d, |r|2) q
4 202 4 h b
+(2lal* + laf 1o + ¢ 1 )+ ieng + Bir =0,
i, +i0yq o D2 e + (02 |r|2 +d, |q|2) r
4 2| 2 4 ) 72)
#(2al* + o laf + ol )+ tar, + Brg =0,
where ¢; and 4, are the coefficients of SPM, while d;, p; and £, represent the coefficients of

XPM.
Substituting Eq. (3) into Egs. (71) and (72) leads to the real part

b;Ulgiv) + (3r<a1 - 6rc2b1 )Uz + (ko —0)U; + (ﬂ, - r<3a, + ’<4b1 )Ui +2qU, (Ul )2

(73)
1\ 2 " "
AU, (U} )| +2URU] +2dU)U;UF + 2,U7 + mUTU7 + U U7 =0,
and the imaginary part
(a — 4Kty )UF +(aq —v)U, + (46’ =36, ) Uy = 0. (74)
Egs. (73) and (74) reduce to the ODE
b,Ul(iv) + 6r<2b,U,“ + (Ka, -0+ - 3r<4b, )U,
5 Vo ] (75)
+2(Cl +dl)Ul (Ul) +2(Cl +dl)Ul Ul +(2«l +‘Lll +gl)Ul =0,
with the constraints
Uf = Ul 5 (76)
ap = 4K'bl 5 (77)
v=a, -8k’b,. (78)

Eq. (75) admits Eq. (27). Inserting Eqgs. (27) and (11) into Eq. (75) gives rise to the following
results:

Case 1:
Ay =0, 4 =+ 31y 3% 0 +3x2 B —10ka; +100 104,
T 6rte, + 6ty 11820, +18k%d, —12¢,—12d,
B =0, b =0 =Oth
3(xt+3x7-2)
1
¢r=- x

(3x2 —10)2 (ke -0+ ;)
(1081c6cl2 + 216K6c,d, + 1081<6d,2 +9% 0y 4 + 9Ky ) —9K4a)/1, —9K4a),u,
9 B &y + 9k By + 2526 ¢ +504 ¢ jd, + 252k )P — 60k oy 2y (79)
—60K> a1ty + 60K 0 Ay + 60K @ 1) — 60K B2 — 60K B 11y — 4327 ¢,
—864K%c;d; — 432> d,> + 100k, A +100K0a; 11, — 10002, —100w; +1008,4;
+1008, 11, +144¢,> +288¢,d, +144d,%).
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Substituting Egs. (79) and (12) into Eq. (27) causes the dark solitons

q(x,t)==% 360 -3’0 +3Kk° B ~10k 0y +100-10 4,
T 6xtey +6x4dy +18K % +18K7d, —12¢, —124,

xtanh (x - (al - 8,(31)1 )t) ei(*Kx+a)t+00)’

r(x,t)=4% 3c’ay —3k*0+3K° B, ~10k @y +100-10 )
T T 6Kty + 6k dy +18K2c, +18x2dy —12¢, — 124,

xtanh (x - (az _ 8K3b2 )I) ei(*Kx+a)t+00)’

and the singular solitons

q(x,t)==% 360 -3k’0+3x° B ~ 10K e +100-10 5,
"6t + 6kt +18x%¢ +18K%d, —12¢, - 124,

xcoth (x - (a1 ~8ik°hy )t) glrxrortd, ),

r(x,t)=4% 3c’ay —3k*0 +3K° B, ~10k @, +100-10 )
T 6ty +6xdy +18x%c, +18x2dy —12¢, —12d,

xcoth (x - (az - 8K3b2 ) t) ei(ikijwthaU ) 5

with
(3 3 2 2
oy =370 +3K7 B =10k +100-10/3)
x(61te; +61*d; +18K7¢ +18°d; 126, 124, ) > 0.
Case 2:
AO =0, A] =0,
b = Ko —o+ b

3kt 6?1

B -t 3%y 3K+ 326, + 5Kk, S0 +56

1=+ )
3K4cl+3K4dl_6K2cl_6K2dl_cl_dl

1
C:lz 2 X
(3K2+5) (kay -+ B;)

(54K6C12 +108K66'ldl +54K6d12 —9’(5(1]}.«] —9K5al/.ll +9K4CO/11 +9K4a)/ll —9K4ﬂlil

9k By —90Kt¢* 180K c;d) —90k*d? =303y 2y 30K a1y +30K% 0 A,
+30K%w 1y —30K% B4 =30k By 1y — 54i2c)* =108 k% ¢yd, —54K%d* 25Kk oy 2y

—25’((1]‘[!] + 2560}.1 + 2560/1] —25ﬂ1/11 =25 ﬁliul —6012 —IZCldl —6d12).
Inserting Egs. (84) and (12) into Eq. (27) yields the bright solitons

3 2 2
q(x,t):i\/3’( o -3k o+3k" i +5k0 —S0+5f

3’(401 +3K4d1 —6’(201 —6K2d1 —C _dl

xsech (x - (oz1 —8k°h, )t)ei(kamﬁa”),

(80)

(81)

(82)

(83)

(84)

(85)
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r(x) =t 3K3Ot2 —3K20)+3K2ﬁ2 +5xa, -50+5p0,
’ - 3’(402 +3K4d2—6’(202—6’(2d2—02—d2 (86)

xsech (x - (a2 ~8i? b, ) t)ei(kamtw” ) ,

with
(31{30:1 —3r<2w+3r<2ﬂ1 +5xq —5w+5ﬂ,)

x(3xte +3xd) —6x7¢, ~6x°d) —c;=d; ) > 0,

and the singular solitons

g(ni)=+ _31(30!1 —3K2w+3rc2ﬁ1 +5k0 —Sw+5f
’ - 3’(401+3K4d1—6’(201—6’(2d1—01—dl (87)

xcsch (x - (a1 ~8k°h, )t) (rrroard,)

3 _ 2 2 _
F(xf) =t 3k 212 3rc4co+3rc [2?2 +51<0;2 S50+5p,
3x Cy +3Kx d2—6’( 02—6’( dz—Cz—dz (88)

xcsch (x - (a2 - 8k3 b, )t) o(rxrorsd, ),

with
3 2 2
(3r< oy —3x“w+3k ﬁ,+51<a,—5w+5ﬂ,)
X(3K4Cl+3K4dl—6K2Cl—6K2dl—Cl—dl)<O.
Case 3
4y =0
- S(Ka,—a)+ﬂ,)
=
3 8K4+6K )

=+

123 al—12rc o+12k* ﬂl—IOKal+10a) 10[31
24t + 24K d, +18x% ¢, +18Kk%d, -3¢, -3d,

4 12r< o “12k%w+12k2 ﬂl—IOKal+10a) 10[31
N 24;< c,+24r<4d,+181< ¢ +18x2d, -3¢, -3d;, ()

v (6r< —5) (Ka,—a)+ﬂ,)

x(432k%¢,? +864K5¢c;d, +432k5%d* +144K° ey ),

14415y 14414 0 2y —144 1% 0y +1441° B2, +144 1% By + 25214 ¢

+504 Kt d) +252K*d — 24013 oy 2y — 24013 oy 11y + 240K 0 2y + 240K 0 1y

—240k% B2, — 240K B 11, 108 k% ¢,> =216 k% ¢;dy —108k>d,* +100K oy 4y +100 Kty 11y
~100w A4 —100 g1 +100 B, 4, +100 B,y +9¢;> +18¢,d; +9d,%).

Substituting Egs. (89) and (12) into Eq. (27) yields the combo singular solitons

251

Ukr. J. Phys. Opt. 2021, Volume 22, Issue 4



Yakup Yildirim et al

a(n)=t 12630 — 12620 +12K2 B, — 10k g +100—10
T 24kt +24x4d, +18x% ¢ +18Kk%d, — 3¢, —3d,

x{coth(x —(a1 —8xh, )t)+csch (x—(al —8k°h, )t)} (90)

i(—kx+ot+6,)

xe ,

3 19,2 2p _ _
F(xt)=+ 121{:12 12K4a)+121c 62 101(0;2 +10w-105,
24k Cy +24K dz +18x Cy +18«x d2—302—3d2

x{coth(x —(az ~8x°h, )t)+csch(x—(a2 - 8x°b, )t)} 91)

i(—Kkx+at+6,)

xe ,

with
(126%0 ~ 1260 +1267 B~ 10K 0 +100-10 3 )

x(241%; +24K%d) + 181 +18K7d) =3¢, =34, ) > 0.

3. Conclusion

In the present study, we have recovered the solutions in the forms of bright, dark and singular
optical solitons for the cases of third- and fourth-order dispersive reflectivities, as opposed to a
common norm of dispersive reflectivity with the CD. This very concept and the corresponding
results have been reported and analyzed for the first time in the field of nonlinear optics. Hence,
these results are truly novel. The results obtained in this work and the new technicalities developed
by us would enhance both a general soliton science and a dynamics of solitons propagating
through optical fibres across intercontinental distances. The foundation stones for such a new
concept are thus grounded.

What needs to be done next is expanding and extending the ideas mentioned above to various
additional scenarios. The latter would include retrieval of the conservation laws within the model,
addressing the model with fractional temporal evolutions and studying the appropriate model with
stochasticity (see, e.g., the stochastic coefficients introduced in Refs. [27—30]). In addition to the
analytical approaches, the models developed in the present work can be handled numerically.
Moreover, the known Adomian and Laplace-Adomian decomposition schemes, the finite-element
approach and some other techniques can be implemented. Such research activities are now in
progress.
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Anomauyin. Bnepwe 6 weniniiniti onmuyi po3ensaHymo KyOIMHO-KEAPMUYHI CONIMOHU, SIKi
3 'SGNAIOMbCSL Y BOJIOKOHHUX OPe22i6CbKUX IDAmKax 3 OUCHEPCIUHON 8I00USHOI0 30amHICI0 OJis
YOMUPLOX PIZHUX GUNAOKIE CIPYKMYD 3 HENIHIIHUM NOKA3HUKOM 3a10MAeHHA. 13 nputinsamoi Hamu
cxemu iHmezpysanHs, AKA € Ni0X000m pieHanHs cunyc—l OpOOHa, GUNIUBAE NOGHULL CNEKMp
OOUHUYHUX COTIIMOHIB, PA30M 13 OCSIKUMU PO3MENCOBAHUMU CONLIMOHAMU.
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