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Abstract. We suggest a novel approach for the fusion of visible ( u ) and infrared 
( ) images, basing on analogy between the mathematical forms of a Jones vector of 
elliptically polarized light wave and a complex 2D vector 0


 composed of the 

images u  and  . Since there is no restriction on which of the two images should be 
chosen as a real (or imaginary) component, one can construct 0


 in the two forms, 

  0 1 2 , Tr
neg u i 


 
or   0 1 2 , Tr

pos iu 


, where the superscript “Tr” 

denotes the operation of transposing, i.e. 0


 represents a column vector. Following 

the analogy with the Jones vector of light wave, the vector 0
,pos neg


 can be 

transformed as 0
,neg posJ 

 
, with J  being a complex 2 2 -matrix, an analogue 

of the Jones matrix for optically anisotropic medium. The above analogy with the 
Jones formalism allows one to synthesize the fused images using three types of the 
fusion algorithms, ‘amplitude’, ‘azimuth’ and ‘ellipticity’ ones. Varying the 
components of the J  matrix with time, one can synthesize the fused image in a 
dynamic mode, thus animating the images fused under smoothly varying parameters, 
which are combinations of the J matrix components. 

Keywords: image fusion, Jones matrices, complex Jones vectors, visible and 
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1. Introduction 
Fusion of images is one of plentiful benefits of digital imaging in comparison with traditional 
analog photography based on photo-chemical developing process, at which an image is printed on 
a solid substrate (paper, polymer, textile, etc.). A digital image is recorded in the form of a 
computer file containing a brightness table of pixels. The essence of image fusion is to combine 
the brightness tables of two partial images of the same scene. This fused image enriches the 
amount of information carried by the two partial images.  

The brightness tables of partial images can be fused either on the lowest spatial image level 
by applying conventional arithmetic or logic operations to the pairs of pixels of the two partial 
brightness tables − or by operating with the tables on a super-pixel level and applying specially 
developed sub-space and multi-scale fusion techniques [1]. Nowadays sophisticated image-
processing procedures [2−6], deep learning [7−9] and neural-network approaches [10−12] are 
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employed for the image fusion. As a result, the pixel-level techniques based on simple arithmetic 
algorithms might seem to be rather primitive and only of educational interest. However, it turns 
out that the actual situation is different. The arithmetic pixel-fusion techniques still remain 
popular, and we believe that their development will be permanently demanded, at least, in the 
nearest years. The reasons are as follows. While the highly intellectual modern super-pixel fusion 
techniques are designed for the teams of qualified users who work in a computer office equipped 
with modern high-power computing facilities, the arithmetic pixel-fusion approaches represent an 
express-technique which is preferable when a real-time, out-of-office image fusion should be done 
in extreme situations with small-size mobile imaging devices by the users who have no special 
skills in programming.  

Although many practical examples of the multimodal imaging are concerned with the visible 
(Vis) and infrared (IR) spectral ranges, there is also a great need in this approach for any 
electromagnetic ranges (i.e., γ-, X-, ultraviolet, Vis, IR and radio-waves). The examples of the 
appropriate portable devices are numerous: portative imaging devices for medical diagnostics, 
target-sightseeing complexes for armoured vehicles, submarines, ships or spacecrafts (note that the 
size of an additional device does matter in the last case), compact low-weight smart imaging 
cameras for expeditions, etc. 

In spite of the obvious needs, the list of available arithmetic pixel-fusion express-techniques 
is short, much shorter than that of the super-pixel fusion techniques. One of the reasons for this 
circumstance is that the information on the express-fusion techniques of military or other speci-
alized sectors might be restricted. Another explanation is related to the very principle of arithmetic 
pixel fusion. Within the field of real scalars, it is limited by the four arithmetic operations 
(addition, subtraction, multiplication and division). Although there are the pixel-fusion techniques 
based on different principles (e.g., expectation-maximization or Markov random-field algorithms 
[1]), the latter are not considered as express-techniques because of their complexity. One of the 
possibilities for boosting novel rapid arithmetic pixel-fusion techniques is overstepping the limits 
of the field of real scalars and passing into the fields of complex scalars and vectors [13, 14].  

Recently we have offered a complex scalar function as a template for the fusion of Vis and 
IR images [13, 14]. In particular, we have generalized the fusion formalism from the field of 
complex scalar numbers to the field of complex vectors, such that one of the partial input images 
(Vis or IR) is chosen as a real component and the other image is an imaginary component of a 
complex 2D vector 0


, which is uniquely defined by these components in a vector basis. Now we 

argue that, by its form, the complex vector  0


 in this case is a formal analogue of the Jones 

vector describing the electric field of elliptically polarized light wave [15−17]. Then the image 
fusion resembles a superposition of eigenwaves in an optically anisotropic medium. Consequently, 
using the analogy with the Jones formalism, one can obtain a transformed fused image described 

by a vector  0J 
 

, where J  is a 2 2 -matrix consisting of complex components. Therefore 

the conclusions that follow from the mathematical properties of Jones-matrix transformations can 
be transferred onto the operations of image fusion.  

The present article is organized as follows. Section 2 introduces the principles of our 
complex vector-image fusion (CVIF) method and the arguments supporting the analogy between 
the Jones formalism and the image fusion. Applications of the Jones-matrix transformations to the 
image fusion are considered in Section 3 and advantages of the CVIF method are discussed in 
Section 4. Finally, Section 5 concludes our results. 
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2. CVIF method 

Let Vis (u ) and IR ( ) images be components of a complex 2D vector  0


, so that one of these 

images is a real component and the other image is an imaginary component of 0


. Since there is no 

restriction on which of the two images must be real (or imaginary) component of the complex vector, 

one can construct two different complex vectors  0
,neg pos


 for the same partial images u  and  : 

 0 1
2neg

u
i




 
  

 


,     (1) 

 0 1
2pos iu




 
  

 


.      (2) 

In the orthogonal basis of mutually orthogonal unit vectors 1c


 and 2c


, the complex vectors 

 0
,neg pos


 can be represented as 

   0
1 2

1
2neg uc i c  

   ,     (3) 

   0
1 2

1
2pos c iuc  

   .     (4) 

Throughout the text, the notation ,neg posf  for the parameter f  under consideration is a short 

form for the expression “ negf  and/or posf ”, e.g.  0
,neg pos


 stands for 0

neg


 and  0
pos


.  

2.1. Analogy of the fused image vector with the Jones vector of polarized light wave 

The forms of the complex vectors  0
,neg pos


 given by Eqs. (1)−(4) bear a striking resemblance to 

the form of a Jones vector describing an elliptically polarized light wave [15−17]:  

1

2

1
2

E
E

iE
 

  
 


,     (5) 

with the partial Vis (u ) and IR ( ) images in Eqs. (1) and (2) corresponding to the electric-field 

components 1E  and 2E  of the Jones vector E


 in Eq. (5). We argue below that, in addition to the 

argument of explicit similarity of the mathematical forms given by Eqs. (1), (2) and (5), there are 
also important physical reasons to employ this analogy for the fusion of multimodal images. The 
arguments supporting the analogy between the Jones formalism and the fusion of Vis and IR 
images are as follows.  

2.1.1. Arguments for the analogy with Jones formalism? 
First, both the components 1E  and 2E  of the Jones vector in Eq. (5), on the one hand, and the 
parameters u  and   of the partial Vis and IR images in Eqs. (1) and (2), on the other hand, vary 
between 0 and 1.  

Second, in the framework of Jones formalism, the light-wave components 1E  and 2E  
correspond in general to two different eigenwaves propagating in an anisotropic medium (e.g., 
ordinary and extraordinary waves in an optically uniaxial transparent crystal [18]). The light wave 

E


 emerging from the medium is a result of superposition of the eigenwaves  1 1 11 2E E c
 

 and 
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 2 2 21 2E E c
 

, where 1c


 and 2c


 are the unit vectors in the vector basis on which the Jones 

vectors are defined. Similarly, the complex vector  0
,neg pos


 represents a result of fusion of the 

partial vector images   11 2u uc
 

 and   21 2 c 
 

. In other words, here the operation of 

image fusion is an analogue of the phenomenon of superposition of optical eigenwaves 
propagating in an optically anisotropic medium.  

Third, 1E


 and 2E


 are independent vectors that correspond to different eigenwaves with 
different polarizations. As a result, they do not add as scalars, being superposed as complex 
vectors instead. Similarly, the two partial Vis ( u ) and IR ( ) images are independent in the sense 
that they cannot be transformed into each other by any known image-processing procedure. In this 
context, it is worth recalling that the partial Vis and IR images differ by the physical principles of 
their recording. Moreover, as a rule, an object of interest (a target) appears to have the opposite 
contrasts on the Vis and IR images of the same scene. A Vis image of a target results from the 
interplay between the absorption and reflection of external light. Consequently, a typical target 
looks dark against a bright background on the Vis image (a positive local contrast). In the IR 
spectral range, a target usually emits IR waves and, therefore, its image results from the interplay 
between the light emission and reflection. Consequently, the same target usually looks bright 
against a dark background on the IR image (a negative contrast).  

As a consequence, scalar summation of the partial images u  and   would lead to significant 
lowering or even vanishing of the contrast of target in the fused image [19]. For this reason, the 
image fusion based on the addition in the field of real scalars is, at least, not desirable for the 
multimodal partial images [13, 14]. A transition to the complex scalar field solves the mentioned 
problem of vanishing contrast. We have shown in Refs. [13, 14] that the contrast doubles for the 
phase image obtained with a so-called complex scalar-function image fusion (SCFIF) method. On 
the contrary, the contrast becomes zero (i.e., a target becomes invisible) in the frame of the scalar-
addition fusion method whenever the target has the contrasts which are equal in the absolute 
values but opposite in the signs in its partial Vis and IR images [19]. The same advantage is 
preserved when we pass to the complex-vector field in the framework of our CVIF method. 
Similarly to the phenomenon of superposition of the eigenwaves, which have different 
polarizations, the fusion of the multimodal images, which reveal the opposite contrasts, should 
also be performed in the field of complex vectors. The sign of the local contrast in the image, 
therefore, corresponds to the polarization of the eigenwaves within the suggested analogy. The 
opposite contrasts in the Vis and IR ranges correspond to the orthogonal polarizations of the 
optical eigenwaves.  

Forth, the squared Jones-vector amplitude is the intensity I of the wave, 

 2 2 2
1 2* / 2I E E E E E    

  
. Notice that, since the intensity of the wave is not necessarily 

equal to unity, the eigenwaves under consideration are orthogonal but not necessarily orthonormal. 
Under the condition 2 0E  , the Jones vector describes the light wave linearly polarized along the 
axis “1” of the Cartesian coordinate system. Similarly, the light wave is linearly polarized along 
the coordinate axis “2” at 1 0E  . Finally, the light wave is elliptically polarized in the general 

case 1 20, 0E E  , and it becomes circularly polarized when we have the equality 1 2E E . 
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Quite similarly, the squared amplitude   20
,neg pos  is the intensity of the image fused by the 

vector-amplitude algorithm. Under alternative conditions 0   or 0u  , the complex vector 
 0

,neg pos


 of the fused image is reduced respectively to one of the partial (Vis or IR) images, which 
are analogues of the linearly polarized eigenwaves. At all the other   and u  values, the fused 

complex-vector images  0
,neg pos


 are analogues of the elliptically polarized waves, with the 

limiting case u   corresponding to the circularly polarized light wave. The independence of the 
  and u  parameters implies that the vectors   11 2u uc

 
 and   21 2 c 

 
 
of the partial 

images are orthogonal but not necessarily orthonormal.  
The correspondence between the basic notions of the Jones formalism and the fusing CVIF 

technique, which has been discussed above, are summarized in Table 1. 

Table 1. Analogies between the Jones formalism and the CVIF method 

  Jones formalism CVIF method 
Jones vector components, i.e. linearly 
polarized eigenwaves 1E  and 2E   

Partial Vis (u ) and IR ( ) images 

Superposition of light eigenwaves Fusion of partial images 

Jones vector E


 of an elliptically 
polarized light wave  

Complex vector  0
,neg pos


 of a fused image 

Polarization of light eigenwave Sign of local contrast in partial image 

Intensity of light wave 
2

E


, squared 

amplitude of Jones vector 
Intensity of fused vector image   20

, ,neg pos


 squared 

amplitude of fusion algorithm  
Azimuth of polarization ellipse Azimuth fusion algorithm 

Ellipticity of polarization ellipse Ellipticity algorithm for fusing images, a measure of 
relative contributions of partial images to a fused image 

2.1.2. What do we gain from the analogy? 
Analogies in the description of different physical phenomena are an efficient tool for deeper 
understanding of known and prediction of new properties and effects. An analogy between 
different physical systems can be based on the similarities found either in their structures and 
behaviours or in mathematical forms of equations that describe these systems. The structural 
element serves as a basis for analogy, e.g., between the solar system and the atom (a planetary 
model of atom). The same concerns the analogy between a freely suspended cholesteric liquid-
crystal droplet with a tangential surface anchoring [20] and a magnetic Dirac monopole [21]. 
Maxwell has used behavioural similarity between the fluid and the electrical current in order to 
develop the theory for various fields of electricity [22, 23]. A similar approach has once been 
employed for the phenomena of superconductivity and superfluidity [24]. Following from 
similarity of the equations for the free energies of a superconductor and a smectic liquid crystal, de 
Gennes [25] has concluded that many effects, which occur in superconductors, should have their 
counterparts in liquid-crystal smectics A. In particular, unwinding of the cholesteric twist at the 
transition into smectic-A phase has been understood as a Meisner effect for superconductor in 
magnetic field, whereas the twist grain-boundary phases in chiral liquid crystals have been 
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predicted [26] and discovered experimentally [27−30] basing on the analogy with the Abrikosov 
phase of superconductor in magnetic field.  

This is why a similarity between the superposition of electromagnetic waves with different 
polarizations and the fusion of multimodal images has inspired us to assign the complex vector 

 0
,neg pos


 to a fused image built of partial Vis and IR images, such that the  0

,neg pos


 parameter 

given by Eqs. (1) and (2) is an analogue of the Jones vector (see Eq. (5)) for elliptically polarized 
wave. As explained below, the Jones formalism opens an efficient way for describing 

transformations of the vector  0
,neg pos


 
under the action of a Jones matrix.  

In the framework of Jones formalism, a Jones vector  0E


 transforms into another vector 
 0E JE

 
 under the action of a 2 2 -Jones matrix J , which has complex components. Because 

the four components of the Jones matrix are complex, they contain eight independent parameters 
together. In the most general case, the Jones matrix J  describes the anisotropic medium 
possessing eight different optical properties. These are refraction, absorption, linear birefringence, 
linear dichroism, circular birefringence, circular dichroism, Jones birefringence, and Jones 
dichroism. Each of these eight parameters affects in a specific manner the components of Jones 
vector. This modifies the following parameters describing the optical wave: the intensity 
(amplitude), the azimuth, and the ellipticity of polarization ellipse. Since the transformation of the 
electric-field vector of optical wave under the action of each of these parameters is well 
understood and can be easily predicted, the analogy of the fused-image vector 


 with the Jones 

vector can be fruitfully employed when fusing images according to the well-known rules of the 
Jones-matrix formalism. This does not require recalculating their action on the components of the 
complex vector 0


. 

Using an analogous Jones transformation, one can obtain a vector  0
, ,neg pos neg posJ 

 
. In 

the same way as the Jones-matrix components affect the components of the input Jones vector, 
they affect the input partial images ( u  and  ). Then the analogues of the parameters such as the 
intensity (or the amplitude), the azimuth and the ellipticity can be calculated for the transformed 
vector ,neg pos


. The latter can be used for inventing three different fusion algorithms, each of 

which carries its own information.  
The polarization states of optical waves can be represented graphically with a standard 

Poincare sphere. Then a possibility for graphical representation of the evolution of transformed 
fused vector ,neg pos


 will represent another benefit of the analogy between the fusion and the 

Jones formalism. The coordinates of different points on the Poincare sphere are specified by the 
azimuth and ellipticity angles, while the radius of this sphere corresponds to the degree of 
polarization of optical wave. An analogous parameter can be calculated for the fused vector 

,neg pos


. Importantly, the data obtained from the fused vector ,neg pos


 
as an analogue of the 

Jones vector can be used to calculate the analogue of the Stokes vector. Then the Mueller-matrix 
formalism can be applied to the image fusion.  

In some cases the matrix J  can be reduced to the Jones matrices of particular optical 
elements such as linear and circular polarizers, linear phase-retardation plates (e.g., quarter- or 
full-wave ones), absorbing or dichroic plates, optical rotators, etc. The effects of these optical 
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elements on the light wave are well understood and, hence, their analogues can be efficiently 
applied to the fusion vector ,neg pos


. In this way, the corresponding calculations can be 

performed according to well-known rules and with well predictable results. Moreover, additional 
possibilities for graphical consideration would appear basing on the Poincare sphere. 

2.1.3. Parameters of ,neg pos
  vector as a basis for fusion algorithms 

Using the analogy with the Jones vector of light wave, the vectors ,neg pos


 can be characterized 

by the amplitude  0
,neg pos , as well as by the azimuth  0

,neg pos  and the ellipticity angle  0
,neg pos  of 

polarization ellipse. These points can serve as origin of three different types of fusion algorithms, 
which we call as amplitude, azimuth and ellipticity algorithms. It is easy to show that the both 

vectors  0
neg


 and  0
pos


 have the same amplitude,  

                  * *0 0 0 0 0 0 0 2 21
2neg neg neg pos pos pos u              

      
, (6) 

where the symbols “  ”and “ * ” denote the scalar product and the complex conjugate, respectively. 
The azimuth   and the ellipticity   are defined by the relations [21]  

  
    

 

*0 0
, ,0

, 0
,

tan 2
1

neg pos neg pos
neg pos

neg pos

t t

t






,    (7) 

  
    

 

*0 0
, ,0

, 0
,

sin 2
1

neg pos neg pos
neg pos

neg pos

t t
i

t



 


,    (8) 

where  

                 * *0 0 0 0 0 0 0 0, , , .neg neg neg neg pos pos pos pos
u ut i t t t t i t t t

u u
 

 
                     (9) 

It is worth noting that, in the framework of the SCFIF method [14],    0 2 21 2 u  
  

implies nothing but the amplitude algorithm (see Eq. (5) in Ref. [14]), whereas  0
negt

u


  and 

 0
pos

ut


  correspond to the t-algorithms of the SCFIF method (see Eqs. (6) and (7) in Ref. [14]). 

Substitution of Eqs. (9) in Eqs. (7) and (8) gives  
     0 0 0 0neg pos     ,      (10) 

     0 0 0
2 2sin 2 sin 2 sin 2 2neg pos
u

u


  


  


.   (11) 

The other functions of the ellipticity angle might also be useful as fusion algorithms: 

 
2 2 22 2

0
2 2 2 2cos 2

uu
u u




 

 
     

,   (12) 

 

 
0

2 222 2
tan 2 2 2u u

uu

 



 


.   (13) 
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Notice that Eq. (11) remains the same when  0u  and  0  are interchanged, thereby 

implying the equality    0 0
neg pos  . Consequently, the same holds for Eqs. (12) and (13). 

3. Jones matrix approach for image fusion 
Consider a matrix  

11 12 11 11 12 12

21 22 21 21 22 22

J J J iJ J iJ
J

J J J iJ J iJ
       

           
.    (14) 

The matrix J  transforms the vectors  0
neg


 and  0
pos


 into the vectors  

 0
, ,neg pos neg posJ 

 
,    (15) 

such that we obtain 

   
   

   
   

11 12 11 12 11 12 11 12

21 22 21 22 21 22 21 22
,neg pos

J u J i J u J J J u i J J u
J u J i J u J J J u i J J u

   
 

   
            

 
            

 
. (16) 

3.1. Amplitude algorithms 
The amplitudes of the transformed vectors neg


 and pos


 read as 

     2 2 22
, , , ,neg pos neg pos neg pos neg posa u b c u      

 ,   (17) 

where 

 

   
   
     

2 2 2 2
11 21

2 2 2 2
22 12

2 2
11 12 11 12 22 21 22 21

,

,

2 .

neg pos

neg pos

neg pos

a b J J

b a J J

c c J J J J J J J J

 

 

 

  

  

           

   (18) 

Eq. (17) shows that, in general, the inequality  

neg pos 
 

      (19) 
holds true, which is different from the corresponding algorithm used in the framework of the scalar 

SCFIF method [13,14]. It is also different from the amplitude  0


 (see Eq. (6)). Therefore, one 

can obtain two different amplitude images neg


 and pos


 after the action of the J  matrix, 
instead of one amplitude image.  

Taking into account that the amplitudes ,neg pos


 represent some fused images, one should 

normalize their maximal possible value by imposing the condition 

 2, max
1neg pos 

 .     (20) 

Substitution of the maximal possible values of the partial images (  0
max 1u   and  0

max 1  ) 

into Eq. (20) gives 

     2 2 2
, , , 1neg pos neg pos neg posa b c     .    (21) 

Therefore, Eq. (17) is an algorithm for fusing the amplitude images with the weight 
coefficients ,neg posa , ,neg posb  and ,neg posc . Regarding Eq. (21), the weight coefficients should not 

exceed unity, such that ,neg posa  and ,neg posb  are independent, whereas ,neg posc  is determined as 
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    2 2
, , ,1neg pos neg pos neg posc a b      

 
.    (22) 

3.1.1. Particular cases of normalization 

The case , 0neg posc  . Weighted scalar complex-amplitude algorithm 

Under condition    2 2
, , 1neg pos neg posa b   , one has , 0neg posc   from Eq. (21), so that the 

amplitude of the fused image vector given by Eq. (17) reduces to the amplitude 

   2 22
, , ,neg pos neg pos neg posa u b   

  of the weighted complex scalar functions [13,14]. 

Moreover, under the condition    2 2
, , 1 2neg pos neg posa b   , Eq. (21) reduces to the normalized 

amplitude algorithm   2 21 2n u    (see Eq. (14) in Ref. [14]), which is based on the 

complex scalar functions neg u i    and pos iu   . Therefore, we are led to conclude that 

the appropriate choice of the weight coefficients ,neg posa , ,neg posb  and ,neg posc  (which, in their 

turn, are defined by the components of the transformation matrix J via Eq. (18)) reduces the vector 
amplitude algorithm (17) of the CVIF method to the scalar amplitude algorithm of the SCFIF 
method [13, 14]. The latter implies that the SCFIF method represents a particular case of the CVIF 
method. 

The case  2, , ,2neg pos neg pos neg posc a b   . Simple scalar-addition algorithm 

Substitution of the condition  2, , ,2neg pos neg pos neg posc a b    into Eq. (21) leads to the condition 

, , 1neg pos neg posa b   . Then Eq. (17) reduces to the algorithm of weighted addition au b    

within the field of real scalars. In particular, Eq. (17) reduces to the arithmetic averaging algorithm 

  2u    within the field of real scalars in the case of , , 1 2neg pos neg posa b    and at 

, , ,2neg pos neg pos neg posc a b   . In other words, at the appropriate choice of the weight coefficients 

,neg posa , ,neg posb  and ,neg posc  (which are defined by the components of the transformation matrix 

J via Eq. (18)) the vector amplitude algorithm, which is defined by Eq. (17) within the field of 
complex vectors, reduces to the weighted addition algorithm and the averaging algorithms within 
the field of real scalars. In other terms, the action of the transformation matrix J via Eq. (15) in 
case of the amplitude algorithm reduces to introduction of the weighted coefficients via Eq. (17). 

3.2. Ingredients of azimuth and ellipticity algorithms 
Let us find the azimuth and the ellipticity of the complex vector images ,neg pos


 given by 

Eqs. (16). They are obtained by the action of matrix J  (see Eq. (14)) on the input complex vector 

image  0
,neg pos


 given by Eqs. (1) and (2). For this aim one has to calculate the parameter 

 2, ,
,

1, ,

neg pos
neg pos

neg pos
t




 .    (23) 

Here 1, ,neg pos  and 2, ,neg pos  are the components of the vector ,neg pos
 , which are defined 

respectively by the 1st and 2nd rows of the column vector given by Eqs. (16): 
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       
       

1, 11 12 11 12 1,pos 11 12 11 12

2, 21 22 21 22 2,pos 21 22 21 22

, ,

, .
neg

neg

J u J i J u J J J u i J J u

J u J i J u J J J u i J J u

     

     

              

              
  (24) 

Substituting Eqs. (24) into Eq. (23) gives 

 
 

 
 

*
, ,2 2 2 2

, ,

, ,neg pos neg pos

neg pos neg pos

a bd i bc ad a bd i bc ad
t t

c d c d

     
 

 
  (25) 

where 

 

21 22 21 22

21 22 21 22

11 12 11 12

11 12 11 12

, ,

, ,

, ,

, .

neg pos

neg pos

neg pos

neg pos

a J u J a J J u

b J u J b J J u

c J u J c J J u

d J u J d J J u

 

 

 

 

      

      

      

      

    (26) 

From Eq. (25) one obtains 

 
 
 

2 22 22 22 21 22 21 22 21 22
, 2 2 2 22 2

11 12 11 12 11 12,

2

2
neg pos

neg pos

J u J J J J J ua bt
c d J u J J J J J u

 

 

     
 

      
, (27) 

 *
, , 2 2

,
2neg pos neg pos

neg pos

ac bdt t
c d


 


,   (28) 

 *
, , 2 2

,
2neg pos neg pos

neg pos

bc adt t i
c d


 


.   (29) 

3.3. Azimuth algorithms 
The azimuth is given by the formula 

 
*

, ,
, 2

,

tan 2
1

neg pos neg pos
neg pos

neg pos

t t

t






.     (30) 

Substituting Eqs. (25)−(29) into Eq. (30) yields in 

 , 2 2 2 2
,

tan 2 2
( )

neg pos
neg pos

ac bd
c d a b

 


  
.   (31) 

Eq. (31) can be rewritten as an explicit function of the input images u  and  :  

 
2 2 2 2 2

, 2 2 2 2 2
,

tan 2 n n n
neg pos

d d d neg pos

u u

u u
  

  

    


    

 


 
,   (32) 

where 

 

2 22 2
, 21 11 21 11 , 11 21

2 22 2
, 22 12 22 12 , 12 22

2 2
, 21 12 21 12 22 11 22 11 , 11 12 11 12 21 22 21 22

, ,

, ,

, 2 ,

n neg d neg

n neg d neg

n neg d neg

J J J J J J

J J J J J J

J J J J J J J J J J J J J J J J

 

 

 

 

 

 

      

      

                      

 (33) 

 

2 2 2 2
, , , ,

2 2 2 2
, ,neg , ,

2 2 2 2
, , , ,

, ,

, ,

, .

n pos n neg d pos d neg

n pos n d pos d neg

n pos n neg d pos d neg

   

   

   

   

   

   

 

 

 

   (34) 
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3.4. Ellipticity algorithms 
The ellipticity is given by 

*
, ,

, 2
,

sin 2
1

neg pos neg pos
neg pos

neg pos

t t
i

t



 


.    (35) 

Substituting Eqs. (25)−(29) into Eq. (35) results in 

, 2 2 2 2
,

sin 2 2neg pos
neg pos

bc ad
a b c d

 


  
.   (36) 

We rewrite Eq. (36) as a function of the input images u  and  : 
2 2 2 2 2

, 2 2 2 2 2
,

sin 2 n n n
neg pos

d d d neg pos

u u

u u
  

  

    


    

 


 
,    (37) 

where 

 

2 22 2
, 21 11 21 11 , 11 21

2 22 2
, 22 12 22 12 , 12 22

2 2
, 22 11 22 11 21 12 21 11 , 21 22 11 12 21 22 11 12

, ,

, ,

, 2 ,

n neg d neg

n neg d neg

n neg d neg

J J J J J J

J J J J J J

J J J J J J J J J J J J J J J J

 

 

 

 

 

 

      

      

                      

 (38) 

2 2 2 2
, , , ,

2 2 2 2
, , , ,

2 2 2 2
, , , ,

, ,

, ,

, .

n pos n neg d pos d neg

n pos n neg d pos d neg

n pos n neg d pos d neg

   

   

   

   

   

   

 

 

 

   (39) 

4. Discussion 
It is well known [15] that variation of the Jones-matrix components results in varying polarization 
state of the light wave emergent from optically anisotropic medium. These transformations of the 
emergent light can be consistently considered using the Poincare sphere. Due to the analogy of the 
Jones vector for light and the complex vector 


 for fused image, the same approach can be 

applied to the image fusion performed with the CVIF method. Application of the Poincare sphere 
to the problems of image fusion is an interesting problem for the future work, which deserves 
further investigation.  

It would be interesting to compare the vector fusion method suggested in this work with the 
recent scalar SCFIF method [13, 14]. In the framework of the SCFIF method [13, 14], one of the 
partial images is chosen as a real part and the other as an imaginary part of a complex function, 
which is then considered as a complex scalar fused image and is treated according to the rules of 
complex scalar function calculus. The SCFIF method in the field of complex scalars is an analogue 
of the fusion algorithm based on the operation of addition in the field of real scalars, although the 
partial images are not added directly in the framework of the SCFIF method. Within the field of 
complex scalar numbers, one can generate two principally different types of the fused images from 
the two partial images, the amplitude and phase ones. By its physical sense, the amplitude image 
can be understood as a root-mean square of the two partial images. On the other hand, the phase 
image can be calculated either as the phase of complex function (i.e., the arctangent of the ratio of 
partial images, which corresponds to a so-called  -algorithm) or the tangent of the phase itself, 
which is nothing but the ratio of the partial images (a so-called t-algorithm).  
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Since there is no restriction on which of the two partial images must be taken as a real part of 
a complex scalar function, each of the  - and t- phase algorithms splits into two sub-algorithms of 
‘positive’ and ‘negative’ phase images. Therefore, within the field of complex scalar numbers, one 
can generate from two partial images at least five different fused images, which should be 
compared with a single fusion algorithm of image addition performed in the field of real scalars. 
Moreover, the other possibilities for the synthesis of additional fusion algorithms are available 
according to the rules of complex-function calculus [13, 14].  

The advantages of the SCFIF method, if compared to its counterpart based on the operation of 
addition in the field of real scalars, are numerous. They cannot be reduced solely to a number of 
possible fused images. First, both the amplitude and phase images carry specific information of their 
own. For this reason they should not be considered as alternatives to each other. Instead, they are 
mutually complementary in the same sense as the amplitude and phase of a complex number are.  

Second, multiple partial images obtained with Vis and IR cameras in the framework of the 
SCFIF method can be sorted respectively into two sets. They are pre-fused separately within each 
of the two sets followed by their fusion according to the rules of complex scalar function calculus 
as the amplitude and phase images. Such a procedure allows one to resolve ambiguity in selecting 
the pairs of images and the order of their fusion. Third, the image-quality indices for the SCFIF 
algorithms are better than those for the real scalar-addition algorithm. The other advantages of 
generalization concerned with passing to the field of complex scalars have been discussed in detail 
in Refs. [13, 14]. The same advantages are peculiar to the case when we pass to the complex 
vector field in the framework of our CVIF method.  

Besides of these common advantages, the CVIF method offered by us has its own advantages 
if compared with its scalar counterpart, the SCFIF method. One of them is based on Eq. (17), 

according to which the amplitude images ,neg pos


 contain the coefficients , ,,neg pos neg posa b   and 

,neg posc  normalized via Eq. (21), such that only two of them appear to be independent. If one 

chooses ,neg posa  and ,neg posb  to be independent, then the third one, ,neg posc , can be calculated 

from Eq. (22). 

It is important that the weight coefficients ,neg posa  and ,neg posb , and thereby ,neg posc , can be 

varied smoothly. This possibility implies that the image fusion can be done in a dynamic mode via 
animating the fused images in the course of variation of the weight coefficients. To illustrate 
application of this theoretical approach, we have fused the two input images obtained with a 
conventional digital camera operating in the Vis spectral range (see Fig. 1a) and a thermal camera 
for the IR range (see Fig. 1b). The dynamic mode of observation of the fused image can be of great 
aid to operators seeking for a target. The illustration of dynamic fusion of the input Vis (see 
Fig. 1a) and IR (see Fig. 1b) images with the amplitude algorithm, 

      2 2 2 21au b a b u       ,   (40) 

is presented in Fig. 2c. Note that Eq. (40) has been obtained by substituting Eq. (22) into Eq. (17).  
Notice that a person on right, which cannot be seen in the Vis image (see Fig. 1a) becomes 

visible on the IR-image (see Fig. 1b). The fusion of the Vis and IR images combines the features 
of the both images in a single fused image. The images fused with the amplitude algorithm given 
by Eq. (40) in the stationary mode with the coefficients 0.5, 0a b   and 0.5, 0.5a b   are 
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shown in Fig. 2a and Fig. 2b, respectively. A person on right, which cannot be observed in Fig. 1a 
becomes visible in the both images of Fig. 2a and Fig. 2b. The fused images obtained at different 
coefficients a  and b  shown in Fig. 2a and Fig. 2b differ somewhat by their contrasts, though not 
too much. It would be hard for an operator to decide which of the images obtained at these a  and 
b  pairs is more informative. 

By varying the coefficients  1;0a  and  0;1b , one can transform smoothly the fused 

image and then compose the obtained set of resulting fused images into a video file (see Fig. 2c). 
Observation of the changes occurring with the fused image as a movie in the course of variation of 
the weight coefficients helps operator to catch targeting features. This is performed without 

 (a)      (b) 
Fig. 1. Input images obtained using (a) a digital photo-camera in the Vis range and (b) thermal camera in the IR 
range. 

 (a)  (b) 
 

 (c) 

Fig. 2. Fusion of input Vis (Fig. 1a) and IR (Fig. 1b) 
images with the amplitude algorithm given by 
Eq. (40). Panels (a) and (b) correspond to stationary 
mode with the coefficients equal to 0.5, 0a b   (a) 
and 0.5, 0a b   (b), whereas panel (c) illustrates 
dynamic mode with the coefficients being varied in 
the ranges  1; 0a   and  0;1b  .  

To play video in the on-line version of article, click 
on the image. 

 

http://www.ifo.lviv.ua/journal/UJPO_PDF/2021_3/video_.avi
http://www.ifo.lviv.ua/journal/UJPO_PDF/2021_3/video_.avi
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focusing separately on each intermediate fused image, switching between them and comparing 
them, and choosing which of the fused images is better. Instead, the movie can be simply stopped 
by operator at the best visibility of a targeted feature. The image changing in time is also more 
convenient for computer-assisted targeting, including target detection, recognition and tracking. 
The dynamic mode of the image fusion suggested above enhances the probability of detection of 
target features (including a person on right) due to smooth variation of the fused image. It is 
known that human eyes perceive better and react more reliably to the image features which change 
in time. A periodical change helps catching reliably a target (by either operator or a computer). It 
is especially true if a target is absent on the image at some weight coefficients and then smoothly 
comes into view in the course of their variation, as illustrated in the video displayed in Fig. 2c. 

It should be noted that the equations derived for the amplitude image-fusion algorithms given 
by Eq. (17) contain variables with the subscripts “neg” and “pos”. The negative (neg) amplitude 
image can be transformed into the positive one, and vice versa, by interchanging the coefficients 

,neg posa  and ,neg posb  involved in Eqs. (17) and (22). In the dynamic fusion mode, when these 

coefficients become nothing else but the weight coefficients which run from 0 to 1 and back again, 
the pos-image transforms into neg-image and back again. Hence, there is no need to keep longer 
these subscripts in Eq. (40). 

The dynamic mode of the image fusion can also be applied to the azimuth (see Eq. (32)) and 
ellipticity (see Eq. (37)) algorithms in the same manner, as it has been demonstrated for the 
amplitude algorithm. This will be a subject of our future work. 

5. Conclusions 
We have presented a novel approach to the image fusion on the pixel level, which is based on the 
Jones formalism developed originally for the propagation of polarized light through optically 
anisotropic media [15]. Our approach is possible due to analogy between the Jones vectors for an 
elliptically polarized light wave and the complex vectors 0

,neg pos
  composed of Vis ( u ) and IR 

( ) input images, according to Eqs. (1) and (2). In the framework of this analogy, one finds a 
vector 0

, ,neg pos neg posJ 
   transformed by a complex 2 2 -matrix J , an analogue of the Jones 

matrix for optically anisotropic medium. Basing on this analogy, one can compose three types of 
the fusion algorithms called as amplitude, azimuth and ellipticity ones.  

Since the coefficients referred to the input images u  and   in the frame of amplitude, 
azimuth and ellipticity algorithms can be smoothly varied, we offer a dynamic image-fusion 
method. The latter enables observing a fused image in a video format by varying these 
coefficients, which are combinations of the components of Jones matrix J . It is clear that a 
dynamic mode of observation that corresponds to changing the fused image in time enhances the 
probability of detecting a target, if compared with a common case of stationary image.  
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Анотація. Запропоновано новий підхід до злиття видимих (u) та інфрачервоних ( ) 
зображень, заснований на аналогії між математичними формами вектора Джонса для 
еліптично поляризованої світлової хвилі та комплексного двовимірного вектора 0


, що 

описує зображення u  і  . Оскільки немає обмежень стосовно того, яке з двох зображень 
слід обрати дійсною (або уявною) складовою, можна побудувати вектор 0


 у двох формах 

–   0 1 2 , Tr
neg u i 


 
або   0 1 2 , Tr

pos iu 


. Тут верхній індекс "Tr" позначає 

операцію транспонування, тобто 0


 представляє собою вектор-стовпець. За аналогією з 

вектором Джонса світлової хвилі, вектор 0
,pos neg


 можна перетворювати згідно зі 

співвідношенням 0
,neg posJ 

 
, де J представляє собою комплексну 2 2 -матрицю, яка є 

аналогом матриці Джонса для оптично анізотропного середовища. Вищенаведена аналогія 
з джонсівським формалізмом дає змогу синтезувати злиті зображення, використовуючи 
три типи алгоритмів синтезу – «амплітудний», «азимутальний» і «еліптичний». Змінюючи 
компоненти матриці J з часом, можна синтезувати злите зображення в динамічному 
режимі, тим самим анімуючи зображення, які злиті згідно із параметрами, що є 
комбінаціями компонентів матриці J і плавно змінюються в часі. 


