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Abstract. We study stationary optical solitons for the case of Lakshmanan–
Porsezian–Daniel model with nonlinear chromatic dispersion and a Kerr law of 
nonlinear refractive index. The solution is expressed in terms of a special function 
and its structure is described in details. 
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1. Introduction 
A delicate and sustained balance between the chromatic dispersion (CD) and the nonlinearity (of a 
Kerr or some other type) associated with refractive index of a fibre give rise to optical solitons, 
which can propagate across inter-continental distances. However, one can observe a preposterous 
effect if this balance is compromised [1–10]. There are a couple of models addressing this issue. 
These are a nonlinear Schrödinger’s equation with various forms of nonlinear refractive index and 
a Sasa–Satsuma equation [1, 5, 6]. The present work addresses a similar situation using a 
Lakshmanan–Porsezian–Daniel (LPD) equation [8]. We are going to study this model in a case 
when the CD gets distorted to a nonlinear form. Then mobile solitons can become stationary. We 
illustrate this physical phenomenon by means of mathematical analysis. 

The governing LPD equation with the nonlinear CD, which describes soliton propagation 

through optical fibres, can be expressed in its dimensionless form: 

   2 22 2 42 *n
t xxxx x x xx xx

xx
iq a q q b q q cq q q q q q q q q s q q                (1) 

Here ( )q x,t  describes the wave profile and represents a complex-valued function. The two 
independent variables x and t in Eq. (1) are respectively spatial and temporal coordinates, the 

remaining coefficients are real valued, and 1i   . The a coefficient corresponds to the nonlinear 
CD and b accounts for the self-phase modulation stemming from the Kerr law for nonlinear 
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refractive index. On the right-hand side of Eq. (1), c represents the fourth-order dispersion 
coefficient and s is associated with quintic nonlinearity. The remaining terms involving  ,  ,   
and   describe the nonlinear dispersion and the related physical phenomena. The power-law 
nonlinearity factor n indicates departure from the linear CD. The first term qt governs linear 
temporal evolution of the soliton pulse, while qx and qxxxx are the first-order and fourth-order 
spatial dispersions, respectively. Finally, q* and q*xx denote complex conjugates respectively of 
the wave field and the CD. This model will be addressed to reveal stationary solitons. 

2. Stationary solitons 
The presence of nonlinear CD leads to stationary solitons [3, 4]. The starting hypothesis for these 
solitons is given by  

   , i tq x t x e       (2) 

Substituting Eq. (2) into Eq. (1) and transforming it to an ordinary differential equation 
results in the relation  
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Here φ(x) is the amplitude component of the stationary wave and λ its wave number. For 
integrability, one must select the value 

c = 0,     (4) 
along with  

 +  = 0,     (5) 
and  

 +  = 0.     (6) 
This simplifies the LPD model as follows: 
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Consequently, the ordinary differential equation given by Eq. (3) reduces to  
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where φ΄(x) and φ΄΄(x) represent respectively the first- and second-order dispersions of the soliton. 
Eq. (8) admits a Lie translational point symmetry, namely / x  . 

Implementing this symmetry, integrating Eq. (8) and discarding integration constants yields 
in the solution  
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and the Appell’s hyper-geometric function is defined as  
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Here m1 and m2 are running indices of summation operations and the Pochhammer symbol is 
defined as  
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The convergence criteria for the series entering Eq. (12) are as follows:  
1 and 1x y       (14) 

Considering Eq. (9), one can arrive at  

 
           

  

1
22 22 6 2 6 2 6 4 ( 4)

.
2 2 4

b n n n n b n n s n
x

n n s




               

   (15) 

This testifies that the solution of Eq. (1) must remain bounded for stationary solitons to exist. 

3. Conclusion 
In the present work, we have demonstrated for the first time a very interesting and promising result 
obtained for the LPD model combined with the Kerr law for the nonlinear refractive index and the 
nonlinear CD. Namely, the stationary soliton solution has been addressed. Here the main promise 
is that the model can be extended to address the other forms of the nonlinear refractive index, 
which are not of the Kerr type. Moreover, the model has to be examined for the cases of 
birefringent fibres and differential group delay. The latter studies are in progress. 
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Анотація. Вивчено стаціонарні оптичні солітони для моделі Лакшманана–Порсезіана–
Даніеля з нелінійною хроматичною дисперсією та законом Керра для нелінійного показника 
заломлення. Розв’язок виражено в термінах спеціальної функції, а також детально 
описано його структуру. 


