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Abstract. We propose an algorithm for fusing infrared and visible images, which is
based on a shiftable complex directional pyramid transform and a SUSAN edge
detector. When fusing the low-pass sub-band coefficients, we employ a weighted-
averaging rule based on local normalized energy. When fusing the directional high-
pass sub-bands coefficients, the SUSAN edge detector is utilized to generate a
decision map and guide the fusion process. In order to reduce the computational
complexity, we calculate the SUSAN edge response only once directly for each
source image. We evaluate our fusion algorithm on a standard TNO Image Fusion
Dataset, using comparisons with a number of traditional fusion algorithms. The
experimental results testify that our algorithm is efficient and feasible. Moreover, it
is superior to the traditional algorithms from the viewpoints of subjective evaluation
and objective fusion metrics.
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1. Introduction

Multi-sensor images usually provide complementary and redundant information about the same
scene, and image fusion aims to merge these information peaces into a single image to offer a
more complex and detailed representation. In surveillance applications, visible sensors mainly
reflect only the rich appearance information. On the contrary, infrared sensors reflect basically the
profile information on objects by capturing their thermal radiation. They are not affected by any
changes in light or disguise, thus enabling to discover the targets and work day and night [1].
Therefore, fusion of those different information components is needed for automatic detection and
localization of the targets [1].

Up to now, many fusion algorithms have been proposed for infrared and visible images.
Generally they can be categorized into three groups based on different fusion mechanisms: pixel-
level, feature-level and decision-level [2]. Among these algorithms, a pixel-level fusion is the most
commonly used. This is due to such its advantages as easy implementation and high computational
efficiency [2]. The pixel-level algorithms are based on a multi-scale transform (MST). The well-
known MST tools include a Laplacian pyramid transform (LPT) and a discrete wavelet transform
(DWT). Because the DWT is superior to the LPT, in particular with respect to localization and
orientation, the appropriate fusion algorithm is generally superior to that associated with the LPT.
However, the DWT for 2D signals cannot represent discontinuity of a ‘line’ or a ‘curve’ efficiently
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and, moreover, it can only capture a limited directional information [3]. Contourlet transform (CT)
[2] is a ‘true’ sparse 2D representation which is implemented by coupling the LPT with a
directional filter bank (DFB). If compared to the DWT, the CT is characterized by multi-scaliness
and localization and has the characteristics of multi-directing and anisotropy. However, like the
DWT, the CT lacks a shift-invariance [3].

Somewhat later, a nonsubsampled contourlet transform (NSCT) has become widely used as a
tool for multi-scale analysis. Nonetheless, it cannot reflect well complex spatial structures along
different directions, due to a fixed DFB in directional decomposition [4]. Moreover, this technique
is time-consuming. To address this problem, Nguyen et al. have proposed a shiftable complex
directional pyramid transform (SCDPT) [5], which is considered as a complex shiftable version of
the CT aimed at image fusion [3]. The SCDPT has many ideal characteristics, such as a shiftable
sub-band, arbitrary high directionality and availability of information concerned with the phase [5,
6]. In image fusion, the SCDPT can provide more structural information and reduce the impacts of
mis-registration because of its shift-invariance property [3].

In the present work we propose an algorithm for fusing infrared and visible images, which is
based on the SCDPT and a SUSAN edge detector. In the light of characteristics of human vision
system and the SCDPT, we discuss in detail a weighted-averaging fusion rule based on the local
normalized energy for low-pass sub-bands and a maximum-choosing fusion rule for high-pass sub-
bands based on the SUSAN edge detector. Several experiments have been performed to show
validity and efficiency of the fusion algorithm suggested by us.

The rest of the article is organized as follows. Section 2 briefly reviews a theory of SCDPT.
Section 3 describes in detail the proposed algorithm for fusing infrared and visible images. The
experimental results and discussion are presented in Section 4, and the conclusion is drawn in
Section 5.

2. Shiftable complex directional pyramid transform

Below we review in brief a theory of SCDPT used in the subsequent sections. The SCDPT uses
the multi-scale filter bank (FB) and the DFB in its two decomposition phases. The multi-scale FB
is made of undecimated two-channel FB and an iterated 2D multi-resolution FB in the low-pass
phase. The structure of the SCDPT is shown in Fig. 1. A signal x(n) is decomposed by the unde-

cimated two-channel FB into L,(n) and R,(n) signals. L,(n) can cause aliasing in the next stage,

Primal 2"-channel [ 1
maximally decimated —— H;i(w)
x(n) DFB —
I
Dual 2"-channel
maximally decimated —— H w)
DFB I

Fig. 1. Structure of SCDPT.
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and R,(n) generates a residual image. The L,(n) signal is brought into a new round of multi-
resolution decomposition, resulting in L,(n) and R (n). This generates low-pass and high-pass

signal components. Then the high-pass component is further brought into a dual-tree directional

FB to generate real and imaginary parts of complex directional sub-bands H(w) and H” (w),
0
whereas the corresponding low-frequency component is decimated by D, ={0 2} , thus

generating a low-pass sub-band. This decomposition performed in a block P is iterated to form a

pyramid. The pyramidal dual-tree DFB consists of a shiftable pyramidal FB and a dual-tree 2" -
channel DFB to provide multi-scale decomposition. The block P in Fig. 1 illustrates the first level
of the pyramidal dual-tree DFB [5].

3. Image fusion algorithm
3.1. Fusion framework
Now we present the framework of our fusion algorithm. Consider two perfectly registered infrared
and visible images 4 and B, and a fused image F . The fusion algorithm consists of the
following steps.

(1) Perform J -level SCDPT on A and B to obtain a single low-pass sub-band and a series of
high-pass sub-bands for each decomposition level and each direction. The corresponding
coefficients can be represented as

{C) (%, ), Cl(x, 0}, {C) (%, ), CFo (%, )} (1
where 1< j <J denotes the jth scale and 6 the direction. Note that C;.‘G (x,y) (I=A4,B) are
complex directional sub-band coefficients, whose real parts come from the primal branch and

imaginary ones from the dual branch of the complex DFB [6].
(2) Perform a weighted-averaging fusion of the low-pass sub-bands, basing on the local

normalized energy to obtain C} (x,y).
(3) Choose a maximum for the fusion of the high-pass sub-bands, basing on the SUSAN edge
detector to obtain C7y(x,y).

(4) Use the inverse SCDPT and the fusion coefficients {C] (x,y)and Cf o(x,»)} toobtain F .

3.2. Energy-based fusion of local normalized low-pass sub-bands

The low-pass sub-bands contain the most of the energy of the source image. It is especially typical
for the infrared and night-time visible images, of which sensors are sensitive to temperature and
illumination, respectively. Then the image features and the structural information are usually
complementary, being reflected in pixel luminance. Therefore we suggest using a local normalized
energy as an activity measure in order to capture that information. The measure is defined as

LNE(x, ) =ﬁ2w AR @)

where |R| implies the size of the local region R of image 1 , which is centred at (x,y), and (i, /)

is the pixel position in R.
Notice that the features and the structural information of the same object, which are provided
by the infrared and visible images, are not always complementary. For example, an electric lamp
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has both high temperature and high illumination, hence the corresponding features in the two type
images are both prominent and redundant, and they can have different structural information. To
distinguish complementary and redundant information and measure the corresponding proportions,
here we adopt the weight-averaging fusion rule. The weights are calculated as

LNE ,(x,y)
LNE ,(x,y)+ LNE,(x,y)’
With the above local weights, the fused low-pass coefficients can be obtained as [6]

Cy (x,y) =w, (x, ) Cj (x,9) + wy(x, ) - C/ (%, ). “4)

w,(x,y) = Wy (X, ) =1=w,(x, ). )

3.3. Fusion of high-pass sub-bands based on the SUSAN operator
SUSAN is an approach worked out for the low-level image processing. The basis of the SUSAN
is associating of each image pixel with the brightness of its local area. Here the local area called as
a ‘Univalue Segment Assimilating Nucleus’ (or USAN) contains much structural information.
Then the image features can be measured by the size, centroid and the second moments of this
nucleus [7].

The SUSAN edge detector described in this section follows a traditional SUSAN algorithm.
It is implemented using a circular mask, whose usual radius is 3.4 pixels. The brightness
comparison takes place among each pixel within the mask and a central pixel, which can be

c(f,fO)=exp(—[—l(?)_[(?°)j6], s)

t

expressed as follows:

where 7, and 7 are the positions of respectively the central pixel and each pixel within the mask,
1(-) means the brightness, ¢ the threshold and ¢ the result of comparison.

The summation of #» comparison results (with n being the number of pixels within the mask)

is given by
n(i) =Y (7 5). ©)
Then a fixed geometric threshold g is set as
8 = gy [4 (7)

where n__ is the maximum # value. After that, the initial edge response R(7)) can be calculated
as

g-n(1p), if n(ry)<g
0, otherwise '

R(1p) = { ®)

Generally speaking, the smaller the area of the univalue segment assimilating nucleus, the larger
the edge response is [7].

High-pass sub-bands obtained using the SCDPT include usually the edges along various
directions, which is in accord with the ability of SUSAN edge detectors. For preserving more edge
information, the maximum-choosing fusion rule based on the SUSAN edge detector is adopted for
the high-pass sub-band fusion. In the meantime, to reduce drastically the computational
complexity, the SUSAN edge response is calculated only once directly on each source image. In
the high-pass sub-bands fusion process, the response can be appropriately re-sampled as a decision
map according to the size of the high-pass sub-band:
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Clo(x, ), if rs(R*(x,»)) = rs(R% (x, 1))

Chy(x.y) = : ©)

Cﬁg (x,y), otherwise

where rs(-) denotes the resample operator.

4. Experimental results and discussion

In this section, we test the performance of our fusion algorithm on a publicly available dataset and
compare it with several traditional fusion algorithms. The test images are referred to as ‘two men’,
‘tank’, ‘bunker’, ‘lake’ and ‘soldier’. All of them come from a TNO Image Fusion Dataset [8]. The
sizes of the images are 576x768, except for the ‘tank’ image for which we have the size 352x472.

We have used for a comparison LPT-based, DWT-based, CT-based and NSCT-based fusion
algorithms, as well as the algorithm based upon a nonsubsampled shearlet transform (NSST). In
case of all of these algorithms, the classical averaging and maximum-choosing rules have been
used for the fusion of the low-pass and high-pass sub-bands with three decomposition levels.
Standard default parameters have been used for the LPT- and DWT-based algorithms. The bases
of the CT and the NSCT are ‘9-7’ for the pyramid filter and ‘pkva’ for the directional filter. Finally,
the basis used in the NSST is ‘maxflat’.

The performance of the fusion algorithms can be evaluated either subjectively or objectively.
The mathematical definitions of a number of objective fusion metrics adopted in the field are as
follows.

(1) Average gradient measures clarity of the image, being defined as

AG(F) = b S S (F G ) = F+1, ) +(F G, )= F GG, j+1))* , (10)

where F(i, j) corresponds to the fused image.

(2) Information entropy [9] is given by

-1 . .
IE(F) ==Y p(i)log, pi). (11)
where L is the gray-scale level and p (i) the marginal probability distribution function for F.

(3) Universal image quality index Q, is calculated between the infrared image A4 and the
fused image F [10]:

Oy (A, F) = Ou4F . 2;‘1A:UF2. ZSAO-FZ , (12)
O4u0F Hy tHp~ O4+0F

where u, and p, are respectively the averages of 4 and F, o, and o, are respectively the
variances of 4 and F, and o . the appropriate covariance.

(4) Structural similarity index measure [11] for the infrared image 4 and the fused image F is
given by

Cpuypr +C)20 4 +C)

(13 + 7 + GG +07 +Cy)

SSIM (A, F) = (13)
where C; and C, are constants introduced to avoid instability. Actually, the structural similarity
index is a modified version of Q.
(5) Normalized mutual information Q,; [12] is defined as
MI(A4,F) MI(B,F)
Oy =2 + .
H(A)+H(F) H(B)+H(F)

(14)

where
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MI(I,F)=H(I)+H(F)~H(I,F), H(I)=-) p()log, p(i),
H(F) ==Y, p(log, p(f), H(LF)==3.,  pli,[)log; pli, f),
and / = A4,B. Here p(i, f) is the joint probability distribution function for / and F, whereas
p(i) and p(f) are the marginal probability distribution functions for / and F, respectively.
Correspondingly, H(I,F) is the joint entropy, and H(/) and H(F) are the marginal entropies.
(6) Tsallis entropy Q,, is represented as [12]

19(A,F)+19(B,F)
= , 15
Ors HY(A)+ HY(B)—19(4, B) ()
where
1 hy (i, j)*
19, F)=—|1-y — 21 | 16
0 l—q[ %hm)q‘lhl(i)q‘l] (1o

g is a real value (g#1), h,.(i,j) the normalized joint gray-scale histogram of the images
I(I =4, B)and F,and h, (i) the normalized marginal histogram of the image /(/ = 4, B, F).

We first give a subjective analysis of the performance of different image-fusion algorithms.
Among the five image sets mentioned above, we have chosen the ‘two men’ to conduct the
experiment (see Fig. 2a, b). Here panels (a) and (b) correspond respectively to the visible image
(describing mainly the background) and the infrared image (highlighting the two persons as the
targets). The fusion results displayed in Fig. 2c—h refer sequentially to the LPT-based, DWT-based,
CT-based, NSCT-based, NSST-based and our fusion algorithms.

() (h)

Fig. 2. Source image ‘two men’ and the corresponding fused images: (a) infrared source image; (b) visible
source image; (c)-(h) fused images obtained with LPT-based, DWT-based, CT-based, NSCT-based, NSST-
based and our fusion algorithms, respectively.

As seen from Fig. 2, all of the fused images highlight the targets and preserve well the
detailed structural information. However, the images depicted in Fig. 2c—g fail to describe
correctly the background information on the sky, since the appropriate spectral information has
been distorted. The results obtained with our algorithm (Fig. 2h) are successful as far as possible in
preserving the original information. To compare the images in much detail, Fig. 3 depicts the
detailed information about an enlarged local region of the fused images (see the location of the
region shown in Fig. 2a). It is evident that the images displayed in Fig. 3c—g reveal very similar
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characteristics, whereas the structural information in panel (h) is smoother. Loosely speaking, the
appearance of the right person in Fig. 3h is roughly the same as that in the infrared source image,
while the images in the other panels are ‘contaminated’ by a cabin seen in the visible source image.
Therefore, one can conclude that the fusion algorithm proposed in this work tends to provide a

ot

better fusion performance.

{

o~

(@)
(©)
()
(&

Fig. 3. Enlarged local regions of the fused images extracted from Fig. 2a—h, respectively.

(h)

The fusion results obtained for the other image sets with the six algorithms under our test can
be subjectively compared using Fig. 4. The results testify that our algorithm preserves both the
thermal and texture information in the source image. The corresponding fused images look like
sharpened infrared images, with clear and prominent targets. As a result, our approach can
facilitate the automatic target detection.

We next provide the objective data of comparison of the six fusion algorithms, using the
same five image sets. The results are listed in Table 1, where the best results are marked in bold.
One can make sure that our algorithm provides the best performance, issuing from the majority of
the fusion metrics. Fig. 5 visualizes the appropriate data of the comparison. Therefore we conclude
that our fusion algorithm outperforms the other algorithms.
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(a) (b) (c) (d)
Fig. 4. Source images ‘tank’, ‘banker’, ‘lake’ and ‘soldier’, and the corresponding fused images: (a) ‘tank’, (b)
‘bunker’, (c) ‘lake’ and (d) ‘soldier’. The first and second rows correspond to the infrared and visible source
images, and the other rows correspond to the fused images obtained using LPT-based, DWT-based, CT-based,

NSCT-based, NSST-based and our fusion algorithms.
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Table 1. Data of objective comparison of the six fusion algorithms, as obtained for the cases of
five different testing image sets. The best results are marked in bold.

Image Algorithm Average Informati 0, Structural O 0.
set gradient on similarity
entropy index measure
LPT 00385 66877 03624 0.6264 02125 0.1916
DWB 00360  6.6041 03371 0.6223 02222 0.2097
= CT 00361 65972 03211 0.6107 02144 0.2095
E  NscT 00356 65796 03570 0.6376 02313 02178
E  NSST 00356 65791 03553 0.6371 02315 02177
::lgrorithm 0.0568  6.8867  0.4884 0.7011 03524 0.3045
LPT 0.0830 74373 0.1466 0.1910 02565 03256
DWB 00777 73998  0.1640 0.2076 02430  0.3249
) cT 0.0770 74086  0.1482 0.1893 02333 0.3241
£ NSCT 00752 74116  0.1641 0.2125 02601  0.3326
T ONSST 0.0750 74120  0.1629 02114 02596  0.3330
Zgorithm 0.1067  7.9518  0.0878 0.1251 0.4003  0.3640
LPT 0.0470  6.9858  0.0344 0.3799 0.1985  0.1612
DWB 00412 68374  0.0553 0.4125 0.1876  0.1678
. CT 00410 68392  0.0553 0.4112 0.1841  0.1633
ig NSCT 0.0406 68238  0.0562 0.4222 0.1932  0.1724
£ NSST 0.0407 68242  0.0548 0.4216 0.1930  0.1721
Zgorithm 0.0464 69550  0.0689 0.4697 0.2667  0.2297
LPT 0.0386 66811  0.1729 0.6028 02313 0.2408
DWB 00365 66292  0.1729 0.6153 02423 02527
) CT 00363  6.6334  0.1737 0.6129 02342 0.2481
£ NscT 00362 66282  0.1849 0.6254 02469  0.2540
T NSST 00362  6.6284  0.1850 0.6259 02467  0.2538
Zgorithm 00520  6.9440  0.4039 0.7440 0.3563  0.2995
LPT 00331 64895  0.1096 0.5296 02508 0.2341
DWB 00317 64417  0.0973 0.5284 02523 0.2339
. CT 00314 64421  0.1005 0.5287 02440  0.2298
£ NSCT 00314 64372 0.1037 0.5335 02530  0.2333
2 NssT 00314 64367  0.1041 0.5338 02531  0.2335
our 0.0351 64689  0.2072 0.6762 0.3088  0.2573
algorithm
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Fig. 5. Values of different fusion metrics: panels (a)—(f) correspond respectively to average gradient, information
entropy, (), , structural similarity index measure, Q,,, and O, .

5. Conclusion

In this work, we suggest a new fusion algorithm based simultaneously on the SCDPT approach
and the SUSAN edge detector. The fundamental reasons behind our choice are as follows. On the
one hand, the SCDPT can describe more structural information and reduce the impact of mis-
registration because of its shift-invariance property. On the other hand, the SUSAN edge detector
represents an approach of low-level image processing which is used for extracting the edge
features. Then the local area of each pixel contains much structural information. By combining the
above two approaches, we work out the combined algorithm for fusing the infrared and visible
images. To implement the fusion process, we adopt the weighted-averaging fusion rule based on
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the local normalized energy for the low-pass sub-bands and the maximum-choosing fusion rule
based on the SUSAN edge detector for the high-pass sub-bands.

The five sets of images have been used to check the performance of the algorithm proposed
in the present work. The comparison with the experimental results obtained using five traditional
algorithms known from the literature has been performed with both the subjective and objective
standpoints. The data of the objective comparisons is based upon the five standard image quality
metrics. Following from both the subjective evaluation data and the objective fusion metrics, we
conclude that our algorithm is superior to the traditional algorithms.
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Anomauia. Mu npononyemo anrcopumm 3numms iHGpauepeoHux i UOUMUX 300padcenb, KUl
0azyemvcsa HA  3MIWEHOMY KOMNIEKCHOMY CHPAMOBAHOMY NIPAMIOHOMY nepemeopeHni ma
oemexmopi kpaig SUSAN. V snusanni xoediyicnmis niodianazoHie nponyckanHs HU3bKUX Yacmom
BUKOPUCIAHO NPABUTIO 38AHCEHO20 YCepeOHEeH s, N0 A3aHe 3 JIOKANbHOI0 HOPMOBAHOIO eHep2icio.
Y 3nusanni nanpamuux koegiyienmis niodianazonie nponycKauHA UCOKUX YACTHOM GUKOPUCTHAHO
oemexmop kpaie SUSAN onss cmeopenmns kapmu NpuiHAmMms piuiens i Kepy8aHHs Npoyecom
3nummsi 306pavicens. [1Jo6 smeHuumu cKiaoHicms 004UCIeHb, MU PO3PAX0BYEMO KPALo8ULlL 8i02YK
SUSAN nuwe ooun paz 6e3nocepeonbo 0isi KOHCHO20 6XIOH020 300padicenus. Mu oyintosanu
3anpONOHOBAHULL AN2OPUMM 3AUMMS HA cmaHoapmuomy Habopi 300paxcens TNO Image Fusion
Dataset i nopigniosanu 1io2o 3 HU3KOW MpaouyiiHux areopummis 3numms. Excnepumenmanshi
pe3yivmamu 3aceiouuny, wo Haul aneopumm € 30iticneHHum i egpexkmugnum. Binvwe moeo, 6in
nepesepuiye mpaouyiini areopummu 3 020y i Ha cyd €KMuHi oyinKu, i Ha 00 EKMUBHI MeMPUKU
3MUMMA 300padtceHs.
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