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Abstract. Using an extended Huygens—Fresnel diffraction integral, we have derived
analytical formulae that describe a partially coherent array of Gaussian beams
passing through an optical target and going back along the entrance way in a
turbulent atmosphere. These formulae include the light intensity distribution at the
return place, as well as the light intensity distribution and the spatial correlation at
the target place. Using numerical calculations, we have studied the effects of laser
coherence length and turbulence strength on the interference fringe contrast and the
spatial coherence degree at the target place, together with the light intensity
distribution at the return place and the system operating range. We have found that
the fringe contrast and the spatial coherence degree at the target place decrease with
increasing turbulence strength and decreasing laser coherence length. Then the
contrast of light intensity distribution at the return place decreases and the
difficulties of identification of optical targets grow. The operating range can be as
large as hundred kilometres under a weak-turbulence condition, decreasing rapidly
to a kilometre level at strong turbulence.
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1. Introduction

Most of optical lenses used in photoelectric equipment have detectors fixed at their focal plane,
such that the laser beam irradiating the equipment can be reflected back by the lens along the
entrance way. This condition is called as a ‘cat-eye effect’ of optical target [1-4]. By using an
active laser-detection technique based on this effect, optical targets can be efficiently distinguished
from a background. Then longer detection distances and higher orientation precisions can be
achieved, if compared with passive detection techniques [5—7]. However, in a modern city
reconnaissance task, optical targets we wish to find are not too far away. For instance, the
intensities of diffusively reflected light coming from walls and glasses are so large that we cannot
confirm whether the signals acquired come from background or optical target. What is more, such
‘harmless’ optical targets as reporters’ cameras could be mistakenly treated as an object.

To find ‘dangerous’ optical targets hidden against a strong-reflection background and
distinguish a target’s type, a new identification method based on active interference laser-beam
scanning of optical targets has been proposed in Refs. [8, 9]. Using this method, space distribution
of the reflected light can be transformed into measurable time series, whose periodic
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characteristics can be used to identify some optical characters, e.g. an optical aperture of the target.
The main assumption made in Ref. [8] rests on the conditions of no turbulence available and a
great coherence of laser beam. Only preliminary laboratory experiments have been performed in
this direction [9]. Of course, the beam quality is reduced under any practical detection conditions,
since the most of laser beams are only partially coherent, and the propagation properties can be
changed by turbulence. Consequently, we suggest an analytical formulation of propagation of a
coherently combined array of Gaussian beams issuing from a generalized Huygens—Fresnel
principle. Moreover, below we report some simulations associated with the influences of laser
coherence length and turbulence strength.

2. Analytical formulae for partially coherent Gaussian array beams passing through
an optical target

Following Ref. [8], the time distribution of the reflected beam is not periodic whenever diffuse
objects are scanned by a combined beam, which is equivalent to a single-beam scanning condition.
So the main emphasis of our research is a combined-beam scanning of optical objects.

Partially coherent light is often used because of less influence, if compared with completely
coherent light. It is known that Gaussian—Schell model (GSM) for the beams is widely employed
to study the propagation of partially coherent light [10-12]. Below we will restrict our analysis to
a simple one-dimensional linear array. In the Cartesian coordinate system, the transverse spectral
density function for the beam combined with 2N + 1 GSM beams in the plane z = 0 is given by [10]
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where the symbols <> and " denote respectively the ensemble average and the complex conjugate,
wo and oy are respectively the waist width and the correlation length of the GSM beam, d, is the
spacing of adjacent beams along the y direction, m and n are the beam-sequence numbers, and
E(yo— mdy) and E(yy' — ndy) are the electric fields of the m-th and n-th GSM beams in the plane
z =0, respectively.
Using the extended Huygens—Fresnel principle, one can represent the cross-spectral density
function for the GSM beam, which propagates some distance L in a turbulent atmosphere and
arrives at the target place, as follows:
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where k is the wave number related to the wavelength A (k=2n/A) and w(y,, y;) represents a
random part of complex phase of a spherical wave due to the turbulence. The random phase can be
written as
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where po implies the coherence length of the spherical wave,
p, =(0.545C *k*z)7", @)

with C,” being the structure constant.
Through integration, Eq. (2) can be transformed into
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Basing on the propagation model represented by Fig. 2 in Ref. [8] and by the Collins formula,
the cross-spectral density function of the GSM beam reflected by optical target reads as
k
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where f denotes the equivalent focus of the target optical lens and A;(y) the window function of
entrance pupil of the target optical lens. The latter can be written as
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where R and @ are respectively the aperture radius and the tilt angle of the optical target, O,
denotes the position coordinate of the target optical lens along the y direction when the scanning
time is ¢, F; and G; are the expand modulus and compound Gaussian modulus which can be
obtained by computer optimization, and j is an integer value from 1 to J (here J = 10). For more
details we refer the reader to Ref. [13].
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After integrating Eq. (10), one obtains
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Using the extended Huygens—Fresnel principle once again, one can obtain the cross-spectral
density function for the GSM beam propagating the distance L in the turbulent atmosphere and

arriving at the return place as follows:
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is the window function of entrance pupil of the target optical lens. So we can get
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When y; = y5/, the light intensity distribution at the return place is
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I3 (y3) =W5(y3,¥3) - (24)

When the synthetic beam scans the target, /5(0) changes with changing position coordinate O,
and scanning time 7.
The spatial coherence between two points is defined as
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The beam spatial degrees of coherence at the target and return places can be obtained from
this formula. Moreover, the light intensity distribution at the target place and the coherence, which
are the major factors that influence the reflection characteristics, can also be obtained. When
y1 =7, the light intensity distribution at the target place is given by
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In the special case of n =0 (i.e., for a single beam), the spatial coherence at the target place
for the two axially symmetric points y; and —y; in the plane z = L reads as

W, (v, — K* 1 1
ulO(ylﬂ_yl)z 1(y1 y1)1/2 :expl:_ 2 272 {_2-"_ 2}}”12]' (27)
[11(y1)11(_y1)] B°R°L"\ py~ 20

From Eq. (27), one can deduce that the spatial coherence between two points of a single
beam is determined by the spatial correlation length of the initial surface, the refractive index, the

structure constant, the waist radius, the detection distance and some other parameters. Furthermore,
the spatial coherence has a strongly influence on the synthetic intensity at the target place. Issuing
from these points, we present in the next section some numerical calculations for the spatial
coherence and the synthetic intensity.

3. Numerical calculations

In our calculation we assume o= 1 mm, A =532 nm, L = 500 m, /= 0.5 m and d, = 8 mm. Besides,
we assume that the scanning speed v, is equal to 0.1 rad/s, the initial position coordinate is zero
(then we have O,=-vf), and the relative spatial correlation length of ¢ is given by oo/, To
analyze the synthesis-light intensity distribution and the spatial coherence at the target place, we
assume N =2. Fig. 1 displays the synthesis-light intensity distribution at the target place under
different turbulences, when the ¢ parameter is equal to unity. One can see that the fringe contrast
of the synthesis-light intensity decrease rapidly with increasing turbulence. There are almost no
distribution peaks till the turbulence is large enough, and the intensity-distribution pattern has
almost a Gauss profile. Then the frequency information in the intensity distribution vanishes
gradually.
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Fig. 1. Light intensity distributions calculated at the target place for different turbulences: C,2=0 (a), 107
(b), 107®(c) and 1072 m™"® (d).
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Fig. 2. Radial changes in spatial coherence degree calculated at the target place for different turbulences: N = 2
(a)and N =0 (b).

In order to study variations in the spatial coherence caused by enhanced turbulence, we have
performed some additional simulations. Fig. 2a shows radial variations of the spatial coherence at
the target place. One can see that increasing turbulence gives rise to more minimum points. When
the turbulence is strong enough, most of them become very weak. Moreover, the curve is
oscillating rather than smooth. This can be explained such that the two axisymmetric points
become irrelevant because of the equivocal phase relationships. Then we have performed some
simulations with the case of single beam. It can be seen from Fig. 2b that there are no oscillations,
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and the spatial coherence decreases with increasing radial length. The enhancement of turbulence

makes this decrease faster. However, the turbulence makes no difference whenever the C,’
parameter gets smaller than 10",
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Fig. 3. Light intensity distributions calculated at the target place for different laser coherence lengths:
0=0.5(a), 1(b),2(c)and 5 (d).
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Fig. 4. Radial changes in spatial coherence degree calculated at the target place for different laser coherence
lengths: N=2 (a)and N =0 (b).

Fig. 3 shows the light intensity distribution at the target place calculated for different laser
coherence lengths. The smaller the correlation length, the broader is the beam in the turbulent
atmosphere and the more peaks are available in the interference intensity curve. When the
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correlation length increases, the peak intensity and the peak contrast become larger. Fig. 4 shows
radial changes in the spatial coherence degree at the target place at different laser coherence
lengths. The differences among the cases of single and multiple beams are similar to those seen

from Fig. 2. In particular, the spatial coherence increases rapidly with increasing coherence length.
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Fig. 5.

Normalized light intensity distributions calculated at the return place for different turbulences
Cr=10"m? (a)and C,2=10"* m™? (b).

Basing on the above results, one can conclude that the turbulence intensity is the key factor
that determines formation of interference fringes. As a consequence, our further studies are related
to the changes in light intensity observed at the return place under conditions of different
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Fig. 6. Normalized light intensity distributions calculated at the return place for different target-aperture
diameters: D = 10 (a), 20 (b), 40 (c) and 100 mm (d).
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turbulences and target apertures. Fig. 5 shows the normalized light intensity distributions at the
return place at different turbulences. Here the intensity is measured in relative dimensionless units.
When the turbulence is weak, the profile of the distribution is still Gaussian, although the contrast
at the return place is much smaller than that at the target place (cf. with the data presented in
Fig. 3). Note also that the spatial distributions in Fig. 3 would turn into time distributions when the

scanning is being conducted. If we have the inequality C,> <10 m??

, the distribution profile is
stable with increasing C,”. The contrast decreases rapidly under this condition. Finally, if the C,’
parameter increases to 102 m >, both the periodicity and the peaks vanish.

Fig. 6 displays the normalized light intensity distributions at the return place under different
target-aperture diameters at the conditions o= 1, C,>= 10" m*? and the diameter D = 2R. When
the aperture diameter remains small, the distribution shape at the return place is similar to that at
the target place. When the fringe width at the target place is invariable, a bigger aperture diameter
leads to worse contrast at the return place. Moreover, then the peaks disappear more rapidly with
increasing D than in the case described by Fig. 4 in Ref. [8]. There are no peaks till the D
parameter reaches the value D =100 mm. In other words, the intensity distribution at the return
place is periodical only when the target-aperture diameter remains less than the interval among the
peaks at the target place.

100g
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Fig. 7. Dependence of propagation distance ensuring enough interference contrast on the C,? parameter (see
the text).

Since the propagation distance has an important influence on the light distribution contrast,
we have undertaken the appropriate calculations. Below we define the contrast to be enough if the
maximum intensity is twice the minimum intensity and assume the additional conditions ¢ = 1 and
d,=0.008 mm. As seen from Fig. 7, a satisfactory interference fringe can be obtained with the
distances of the order of 100 km, whenever C,2=10"m™??. On the other hand, when we have
C,2=10"m™?, this distance drops down to only 1.2 km. Therefore the propagation distance
decreases rapidly with increasing turbulence. Nonetheless, one can obtain a better interference
effect after improving beam quality.

4. Conclusion

In the present work we have studied the influences of atmosphere turbulence and laser coherence
on the interference scanning recognition technique that employs active-interference laser beams.
Our studies represent a much more broader and deeper version of the work done by the authors of
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Ref. [8]. In contrast to the earlier literature data, we have obtained more practical results. We have
suggested analytical formulation of the propagation of partially coherent Gaussian array beams
that pass through an optical target and go back along the entrance way in the turbulent atmosphere.
The problem is considered using the generalized Huygens—Fresnel principle. A number of
simulations have been performed to study the influences of the laser coherence length and the
turbulence strength. Our results testify that with strengthening turbulence and decreasing laser
coherence length reduce gradually the fringe contrast and the degree of spatial coherence, thus
increasing practical recognition difficulties. Under condition of weak turbulence, the propagation
distance can be equal a hundred kilometres. However, when the turbulence is strong enough, the
propagation distance is cut down to only 1.2 km. Notice that if a single longitudinal-mode laser is
used under the condition of moderate turbulence, the propagation distance can be improved to
almost 3 km.
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Anomauia. 3 suxopucmauusm ysazanvhenozo ougppaxyitinozo inmezpana Iotirenca—®@penens
00epIICano ananimudni Gopmyau 0iisk ONUCY YACMKOB0 KO2EPEHMHO20 HADOPY TaYCOBUX NPOMEHIE,
Wo npoxoodsme Kpizb ONMUYHY MiWeHb | UOYMb HA3A0 MUM Jice UWUISAXOM YV MypOyieHmHuiu
ammocgepi. Bonu exnrouaioms po3noodin iHmeHcusHOCmi CeIimaa 8 MiCyi NOBEPHEHHS, ad MAKOIC
PO3NOOIN [HMEHCUBHOCME C8IMIA MA NPOCMOPOBY KOpeusayiio 8 yinbosomy micyi. Ha niocmasi
YUCENbHUX — PO3PAXYHKIE — UEUEHO BNAUE  OO0BJCUHU — KO2EPeHMHOCMi Jjasepa ma — Cuiu
MmypOyIenmHOCMI HA KOHMPAcm iHmepgepenHyiunux cmye i CImyninb nPOCmopo8oi Ko2epeHmHoCmi
8 YiNbOBOMY MICYI, A MAKONC PO3NOOLL IHMEHCUBHOCMI C8IMNA 8 MICYl NOBEePHEHH ma poboyull
dianason cucmemu. Buseneno, wo xommpacm cmye i cmyninb npocmopogoi KocepeHmHOCHI 6
YinbogOMY Micyi 3MEHUYIOMbCA 3 NOCUIEHHAM CUIU  MypOYIeHmHOCMi mda 3MeHUEeHHAM
KozepenmHuoi Oosocunu aazepa. Todi KoHmpacm po3nooiny IHMeHCUSHOCMI c8imna 8 Micyi
NOBEPHEHHS NOHUNCYEMBCA, A CKIAOHiCMb i0enmuikayii onmuyHux yineti 3pocmae. B ymosax
cnabkoi mypoyirenmnocmi pobouull 0lanazon Modice CKIA0amu COMHIO KilOMempis, WeUOKo
SMEHULYIOYUCH 00 PIBHS KIIOMEmpI6 3a YMOBU CUNbHOL MYpPOYIeHMHOCI.
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