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Abstract. Hardness is an important index for wheat quality, which determines its 
usage, price and wheat-processing techniques. Therefore accurate measurements of 
the hardness of kernels is a key problem for assessing wheat quality. In this work we 
develop a new method for testing the hardness basing on a laser-induced ultrasonic 
signal. We describe the measurement principles, as well as sampling and pre-
processing of ultrasonic signals. The acoustic signal is analyzed both in the time and 
frequency domains, using fast Fourier, discrete cosine (DCT) and wavelet (WT) 
transforms. The main eight parameters whose correlation indices surpass the 
threshold of 0.8 are selected as feature characteristic parameters of the hardness. 
They include a waveform index T6, a pulse factor T7, sub-band energy ratios SER1–
SER3, a sum of the DCT magnitudes, and two wavelet parameters, WTF1 and 
WTF2. A testing model of the hardness is built basing on a standard extreme 
learning machine (ELM) algorithm and using all of these feature parameters as an 
input. A number of experiments have been performed on twenty wheat varieties 
with different hardness indices. The results show that the maximal relative measure-
ment error and the mean relative error are approximately equal to –3% and 1%, res-
pectively. As a result, our method of measuring the wheat hardness, which is based 
on combination of laser ultrasonic waves and ELM, is feasible and accurate enough. 
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1. Introduction 
Wheat is one of the most important cereals in the world, of which total planning areas, production 
amounts and trade volumes are the largest among the grains. To estimate the quality of wheat, its 
hardness is used as an important index determining flour extraction rate, flour and milling qualities, 
processing energy consuming and ultimate usage [1]. A number of methods have been used to 
measure the wheat hardness. These are a press method [2], grinding and anti-crashing index 
methods [3], an imaging processing method [4, 5] and some others. Although their principles are 
mostly simple, there are many limitations. For instance, the appropriate experimental procedures 
are often complex, the testing time is long and kernels are often damaged. This does not meet the 
requirements of real-time and non-destructive measurements. 

To solve the problem, a near-infrared spectroscopy and artificial neural networks have been 
used to predict the hardness and the other quality parameters of wheat [6–8], although the 
corresponding measurement accuracy is easily affected by the moisture of kernels. In the recent 
years, acoustic methods have been put forward. So, D. Massie et al. have used an improved 
constant-speed millstone to get acoustic signal when the kernels are grinded [9], along with a 
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hardness model of wheat. However, kernels are damaged in this process. In 2005, H. W. Yang has 
designed an acoustic-emitting device to measure the wheat hardness, where the kernels fell down 
freely and affected a steel plan [10]. Then a highly sensitive microphone is used to detect a sound 
signal. After some feature parameters are extracted, one can develop a testing model based on a 
back-propagation neural network, to forecast the hardness. Later, A. Marzec et al. have obtained 
the acoustic signals by crushing kernels [11]. According to experimental results, one observes 
significant correlation between the signal and the wheat hardness. 

Although the methods mentioned above can efficiently test the wheat hardness, the 
measurement accuracy is greatly affected by a background noise. To improve the signal-to-noise 
ratio (SNR), some extra processing should be adopted, which usually limits a real-time feature of 
the methods. Hence, finding a quick, accurate, non-destructive and cheap method for testing the 
hardness is still an urgent need. In the present work we put forward a new method for testing the 
kernel hardness, which is based on the erosion effect of laser ultrasonic signal. First, the ultrasonic 
signal from the wheat is obtained using laser erosion. Then the characteristic parameters of 
longitudinal ultrasonic waves are extracted both in the time and frequency domains. Finally, to 
measure the wheat hardness, we introduce these parameters into a testing model based on an 
extreme learning machine (ELM). 

2. Measurement principles of wheat hardness basing on laser-induced  
ultrasonic signal 
When a surface of kernel is exposed to pulsed-laser light, mutational temperature and stress fields 
are formed in a rim surface zone of a grain as a result of energy absorption. This excites ultrasonic 
waves, as illustrated schematically in Fig. 1. A pulsed-laser beam (the wavelength λ = 1024 nm, 
the power 2 W, the repetition frequency 10–50 Hz and the duration time 10 ns) is divided into two 
beams by a splitting mirror. A reflected beam is used as a synchronous-detection signal of an 
oscilloscope, and a transmitted light is converged on a wheat surface after weakening by an 
attenuator. The transmitted-light intensity is adjusted so that to surpass the erosion threshold of 
wheat. Therefore the grain surface is expanded and evaporated, thus exciting a strong ultrasonic 
signal. This signal is received near the grain surface by a detector (a capacitive ultrasonic detector 
with the sensitivity 2.0 mV/Pa, the SNR 90 dB, the dynamic range 40–170 dB and the response 
frequency 50–200 kHz). Then it is amplified and displayed on an oscilloscope [12, 13]. 

 
Fig. 1. Schematic diagram of our hardness-testing method. 
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There are many hypotheses about the force induced by a pulsed laser during interaction of the 
laser beam with the material [14]. To find the acting force in analytical form, we proceed from 
assumption of a Gaussian-like beam of a single-pulse laser. In addition, during energy exchange 
between the laser wave and the kernel, the heat-exchange effect is primary, while the effects of 
radiation and convection can be ignored [15]. Since the light absorption occurs only inside a 
superficial kernel layer, the light energy can be absorbed quickly within a very thin surface of the 
kernel, whenever the laser axis is arranged vertically. Then we suppose that the light energy 
absorbed by wheat is totally transformed into thermal energy. 

According to the law of energy conservation, the entropy of wheat increases quickly on the 
surface, which gives rise to local temperature increment and volume expansion. We use the 
column coordinates, considering the Gauss characteristics of the pulsed laser and the kernel shape. 
The equation of heat conduction can be expressed as follow: 

( , , ) 1 ( , , ) ( , , ) ( , , )T r z t T r z t T r z tc rk k I r z t
t r r r z z


                    

,   (1) 

where T(r, z, t) represents the temperature distribution at a time t, I(r, z, t) denotes the power-
density distribution of the incident pulsed-laser light, and ρ, c and k are respectively the parameters 
of hardness, heat capacity and thermal diffusivity of wheat. With increasing temperature, the local 
region on the surface expands and a transient displacement is excited. The corresponding 
displacement U(r, z, t) can be written based on the equation of thermoelastic effect: 
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where λ and μ represent the Lame constants, and ρ and a are respectively the hardness and the 
thermal expansion coefficient of wheat. 

According to Eqs. (1) and (2), the ultrasonic displacement U(r, z, t) excited by the pulsed-
laser erosion is linked with the hardness ρ. Then the hardness parameter of the kernel can be 
derived after the changes in the ultrasonic displacement have been measured. 

3. Feature extraction for the acoustic signal 
3.1. Signal acquisition and pre-processing 
Considering a great diversity of wheat and a random position of radiation point on the kernel, one 
can predict a large difference in the ultrasonic intensities. Fig. 2a shows the signals taken from two 
wheat varieties with different hardnesses. Here we deal with the factor that affects the 
measurement accuracy seriously. To improve the sampled signal, two microphones with different 
preamplifiers are used in our experiments. Their amplifications are equal to 1 and 10 V/Pa, and 
their frequency response ranges are the same, 100 kHz. The two microphones are mounted parallel 
along the reflecting direction of laser light, and the distance from the kernel surface to the 
microphones is about 20–25 mm. When the kernel is irradiated by the pulsed laser, the excited 
signal could be sampled by these two microphones at the same time. After the sampled signals are 
filtered and amplified, the noise whose frequency is lower than 60 Hz is eliminated and the signal 
power is increased. After that, the improved sound signal is converted by a 16-bit A/D card. 
According to the Shannon’s law, the sampled frequency then amounts to 200 kHz. 

Let the signal sampled by the microphone with the amplification of 1 V/Pa be denoted as 
f1(x), and the signal sampled by the other detector as f2(x), with x representing a sampled point. 
First one has to calculate the number of saturation points for these two signals. If this number is 
not larger than ten for the function f2(x), we adopt it as a final ultrasonic signal. Otherwise, the 
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signal f1(x) is used. After the sound signal is pre-processed and selected by the above procedures, 
the signal excited by the pulsed laser is obtained (see Fig. 2b). 

3.2. Feature extraction 
The laser-induced ultrasonic signal carries a lot of information about the hardness of wheat. 
Analyzing it and extracting properly characteristic parameters of the signal is a key for any 
hardness testing. The features of the signal can be divided into two groups, time- and frequency-
domain ones. 

3.2.1. Feature extraction in the time domain 
In the time domain, the character of signal is described mainly by the amplitude, the wavelength 
and the period. Then one can calculate the feature parameters in the time domain, which include 
the absolute amplitude average T1, the energy T2, the power T3, the mean square root of the 
amplitude T4, the zero-passage ratio T5, the waveform index T6, and the pulse factor T7. 
Definitions of these parameters are readily available in the literature [13]. The correlation between 
each of the parameters and the wheat hardness can also be calculated. Then the factors with the 
coefficients surpassing a threshold of, say, 0.8 can be selected as the main characteristics of the 
wheat hardness. They have turned out to be the waveform index T6 and the pulse factor T7. The 
relationships of these feature parameters and the hardness of wheat are illustrated in Fig. 3. 
Although the slope changes for T6 and T7 are different, the both parameters are correlated 
positively to the hardness, whereas the tendencies of variations are similar. 

  
Fig. 3. Relationships of T6 and T7 parameters with the wheat hardness (see the text). 

  
(a) acoustic signals detected for the wheat with 

different hardnesses 
(b) pre-processed ultrasonic signal 

Fig. 2. Acoustic signals detected in case of wheat with different hardness parameters (a) and pre-processed 
ultrasonic signal (b).  
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3.2.2. Feature extraction in the frequency domain 
The spectrum and the power distribution of any signal can be described in the frequency domain. 
Some of the corresponding parameters can have a close link with the hardness and, therefore, can 
be selected as the main feature parameters. In our experiments, we have used the fast Fourier 
transform (FFT), the discrete cosine transform (DCT) and the wavelet transform (WT) to extract 
the characteristics of signal. 
(1) Feature extraction based on the FFT 

FFT of a signal is defined as follows: 

   
21

0
X k

πxkN
N

x
f x e

 


  .      (3) 

where N is the length of signal. In our experiments, the response frequency of the microphone 
ranges from 0 to 100 kHz. Then the frequency spectrum is divided into sub-bands of the length 
1000 Hz: f1, f2, …, fi, …, f100. Then one can calculate the energy of the sub-band fM: 
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The sum of the spectral energies S(Xi) can be computed as 
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Denoting the ratio of E(fM) and S(Xi) as a sub-band energy ratio (SER), we obtain 
 M iSER E f / S(X ) .     (6) 

Twenty different wheat varieties have been used in our experiments and 1000 kernels have 
been selected as testing samples for each of the variety. Application of the FFT to the signals and 
calculation of the SER parameters have revealed that the SERs corresponding to three different 
sub-bands are fairly correlated with the hardness. These are the sub-bands 8–9, 9–10 and  
14–15 kHz, of which SERs are denoted as SER1, SER2 and SER3. Dependences of the wheat 
hardness on the those parameters are depicted in Fig. 4. 
(2) Feature extraction based on the DCT 
DCT is similar to discrete Fourier transform, although its energy is more concentrated, which can 
make the energy focus in a few sub-bands. Thus, the transform error is less if one processes signals 
with poor initial data and strong correlations. The 1D DCT may be written as 
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The DCT processing of the signals includes the follows stages: 
(i) calculating 8192 DCT points for every ultrasonic signal and obtaining a serial 

1 8192A   ; 

(ii) computing the square of A and obtaining a new sequence 1 8192B   ; 

(iii) calculating the sum of all the B elements, which is denoted as P, and then dividing 
the sequence B by P, with the result given by a serial 1 8192C  ; 
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(iv) calculating the average of the C for each point and for all of these kernels (it is 
supposed that there are L kernels in every sample); the latter parameter is used as the 
DCT magnitude for this point; then a series 1 8192D    is obtained, which is regarded as 

the DCT for a given sample. 

 

 

 

Fig. 4. Relationships of SER1, SER2 and SER3 parameters with the wheat hardness (see the text). 

We have found experimentally that different DCT spectra can be observed for different 
hardnesses at the points ranging from 2386 to 2995. As an example, Fig. 5 shows the DCT spectra 
for the two wheat samples with the hardnesses equal to 47.0 and 65.7. One can use the sum of the 
DCT magnitudes corresponding to the above range as a characteristic parameter in the frequency 
domain. It is denoted as DT. The relationship between DT and the hardness is illustrated in Fig. 6. 
As seen from Fig. 6, the DT value increases with increasing hardness. 
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Fig. 5. Probability distributions of serials 1 8192D   referred to samples 1 and 2. The hardnesses of samples 1 
and 2 are equal to 47.0 and 65.7, respectively. 

 
Fig. 6. Relationship between DT parameter and the wheat hardness. 

(3) Feature extraction based on the WT 
WT, which is derived from a short-time Fourier transform, supplies an observation window that 
can be adjusted automatically with changing frequency. The observation window with high time 
resolution and low frequency is more adopted for the high-frequency part of signal, which makes 
the WT promising for analyzing local signals both in the time and frequency domains. A sampled 
ultrasonic signal is decomposed into three layers with the WT, basing on a standard wavelet 
function db5. Then four coefficient serials d1, d2, d3 and a3 are obtained (see Fig. 7). 

 
Fig. 7. Diagram that explains WT-decomposition of a signal. 

The ultrasonic signal has been sampled and four wavelet serials have been obtained for each 
kernel. Then the averages of each of the serials have been calculated for all of the kernels 
contained in every sample. As a result, four new sequences have been obtained, which are denoted 
as D1, D2, D3 and A3. These four serials have been compared for the two wheat varieties with 
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different hardnesses. As seen form Fig. 8, the sub-bands from 16 to 20 for D3 and A3 are evidently 
different. This can be used to distinguish the hardness of wheat. We have calculated the quadratic 
sums of these two parts and denoted them as WTF1 and WTF2. Our experimental results indicate 
that the latter parameters correlate strongly with the wheat hardness (see Fig. 9). Hence, they are 
also taken as the feature characteristics of the laser-induced ultrasonic signal in the frequency 
domain. 

  (a) distribution of D1 

  (b) distribution of D2 

  (c) distribution of D3 

  (d) distribution of A3 
Fig. 8. Comparison of WT coefficients for samples 1 and 2. The hardnesses of samples 1 and 2 are equal to 
47.0 and 65.7, respectively. 



Detection of wheat 

Ukr. J. Phys. Opt. 2017, Volume 18, Issue 4 209 

According to the analysis performed above, one can extract a number of feature parameters 
in both the time and frequency domains to measure the hardness of the wheat accurately. This is 
based on the sampled ultrasonic signals, which are described by the two time-domain parameters 
(the waveform index T6 and the pulse factor T7) and the six frequency-domain parameters (SER1, 
SER2, SER3, DT, WTF1 and WTF2). Issuing from these points, a hardness-measurement model has 
been built that involves all of the above parameters. 

 
Fig. 9. Relationships of WTF1 and WTF2 parameters with the wheat hardness. 

4. Determining the hardness from ELM-based testing model 
There are many methods for building a testing model, e.g. polynomial fitting, a back-propagation 
neural network and a support vector machine. Although the polynomial-fitting method is easy, its 
error remains large for a single-order polynomial. To increase the fitting accuracy, higher-order 
polynomials should be used, which in fact violates a real-time feasibility of the method. In case of 
the back-propagation neural network, many parameters of a net should be set initially. Moreover, 
the problems of low efficiency and local optimum are often faced. In order to overcome this 
drawback, one can use the support vector-machine method. However, the parameters of support 
vector machine should be adjusted well to get the optimum model, which often costs a lot of time. 
In recent years, the ELM has been put forward to solve the problem. Within this approach, only 
node numbers of a hidden layer should be set initially. At the same time, the input nodes’ weights 
and the nodes’ thresholds for the hidden layer need not be adjusted at the stage when the model is 
being developed. As a consequence, a single-optimum model can finally be obtained, thus 
implying fast learning speed and good generalization ability of the ELM. 

The ELM is a kind of novel single-hidden layer feed-forward neural network, of which 
structural diagram is shown in Fig. 10. Here x1 … xN represent the input nodes, hi is the weight 
relating the input node and the i-th node of the hidden layer, βi the weight relating the i-th node of 
the hidden layer and the output node, bi the bias of the i-th node of the hidden layer, and tj the 
output for the hardness that corresponds to the sample j. In our experiments, the extracted feature 
parameters for each kernel in the training sample have been used as the inputs and the 
corresponding hardness index has been taken as the output for the ELM. Thus, the input order of 
the data has no influence on the precision of the model. In other words, it does not matter which of 
the kernels is studied first. Therefore, exchanging the orders of the elements has also no influence 
on the solution of our model. 

To establish the testing model of the wheat hardness, twenty wheat varieties have been used 
and 100 kernels have been selected from each variety, to form a training sample. Hence, there are 
2000 kernels in total in the training sample. The ultrasonic signals have been obtained for each of 
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the kernels and the corresponding 
feature parameters have been 
extracted. Then the feature 
parameters and the hardness index 
can be used respectively as the input 
and the output of the model. In other 
terms, there are eight nodes in the 
input layer and one node in the 
output layer. The node number of the 
implicit layer can vary from 13 to 20. 

To establish the testing model 
of the wheat hardness, twenty wheat 
varieties have been used and 100 

kernels have been selected from each variety, to form a training sample. Hence, there are 2000 
kernels in total in the training sample. The ultrasonic signals have been obtained for each of the 
kernels and the corresponding feature parameters have been extracted. Then the feature parameters 
and the hardness index can be used respectively as the input and the output of the model. In other 
terms, there are eight nodes in the input layer and one node in the output layer. The node number 
of the implicit layer can vary from 13 to 20. 

The experimental results have testified that, when the node number of the hidden layer is 
equal to 17, the performance of hardness testing becomes the best. Therefore the optimal structure 
of our ELM model is 8–17–1. Then 20 kernels are randomly selected from each wheat variety to 
construct the testing sample. After extracting the characteristics for each kernel, the feature 
parameters are introduced into the model and the hardness index is calculated automatically. For 
each wheat variety, the hardness indices for all of the 20 kernels predicted by the testing model are 
averaged and these averages are used as final experimental results for this variety. The hardness 
indices for all of the 20 wheat varieties have been forecasted in this manner, as illustrated in 
Fig. 11. Our results demonstrate that the maximal relative error is as small as –3%, whereas the 
average measurement error is still less, being close to 1%. This implies that our method for 
measuring the wheat hardness based on the laser ultrasonic signal is feasible. Moreover, the testing 
accuracy appears to be better, if compared with the other hardness-measurement methods known. 

 

 
Fig. 11. Measurement results obtained for the wheat hardness. 
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Fig. 10. Structural diagram of the ELM. 



Detection of wheat 

Ukr. J. Phys. Opt. 2017, Volume 18, Issue 4 211 

5. Conclusion 
To measure the hardness of wheat, we have developed a new testing method, which is based on the 
erosion effect of laser light and the corresponding laser-induced ultrasonic signal. The feature 
parameters of the ultrasonic signal are extracted in both the time and frequency domains, and eight 
parameters are obtained that correlate the most strongly with the hardness index. Using these 
characteristics, along with the ELM algorithm and the results for the hardness obtained with the 
test samples, we have built the appropriate testing model. As a result, we have reduced the 
maximal relative measurement error to about –3%, while the mean relative error is close to 1%. 
This meets the main accuracy requirements for testing the wheat hardness in a practical situation. 
As a result, our approach yields a new kind of accurate, rapid, non-contact and micro-destructive 
techniques for testing the wheat hardness. 
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Анотація. Твердість є важливим показником якості пшениці, що визначає його 
використання, ціну та методи обробки пшениці. Тому точні вимірювання твердості ядра є 
ключовою проблемою для оцінки якості пшениці. У цій роботі ми запропонували новий 
метод перевірки твердості пшениці на основі аналізу лазерно-індукованого 
ультразвукового сигналу. Описані принципи вимірювання, вибірка та попередня обробка 
ультразвукових сигналів. Акустичний сигнал аналізується, як в часовому так і в 
частотному вимірах з використанням швидкого дискретного Фур’є та вейвлет 
перетворення. Основні вісім параметрів, коефіцієнти кореляції яких перевищують порогові 
значення 0,8, вибирались як характеристичні параметри твердості. Вони включали в себе 
показник сигналу T6, коефіцієнт імпульсу T7, співвідношення енергії піддіапазону  
SER1-SER3, суму величин дискретного Фур’є перетворення та два вейвлет-параметри - 
WTF1 та WTF2. Модель тестування твердості була побудована на базі алгоритму 
стандартного екстремального навчання з використанням всіх цих параметрів як вхідних 
даних. Експерименти виконано з двадцятьма різновидами пшениці з різними показниками 
твердості. Результати свідчать, що максимальна відносна похибка вимірювань та 
середня відносна похибка є приблизно рівними 3% і 1%, відповідно. Як наслідок, наш метод 
вимірювання твердості пшениці, який базується на комбінації лазерно-індукованих 
ультразвукових хвиль та стандартного екстремального навчання, є здійсненним та 
достатньо точним. 


