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Abstract. Image fusion is aimed at combining source images of the same scene into 
a single fused image with more reliable and precise information, which is suitable 
for further image-processing tasks. Here we present a novel method for fusing 
infrared and visible images, which is based on nonsubsampled shearlet transform 
(NSST) and block compressive-sensing sampling (BCSS). Compressive-sensing 
approach is widely used in various fields and constitutes a basis of low-signal 
sampling compression method employed under conditions of sparsity of signals. We 
investigate the BCSS technique in image fusion and suggest a fusion method where 
the NSST is applied for decomposition and reconstruction, and two-measure forms 
of local region energy are presented for maximum-choosing fusion rules for the 
NSST subband coefficients. Our approach is tested on five standard datasets of 
infrared and visible images. The results are compared with those obtained using 
several common fusion methods. The experimental results illustrate validity and 
efficiency of our method. Both the efficiency and robustness of the fusion are 
analyzed using a number of image-quality measures. 
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1. Introduction 
As two kinds of the most used image modalities, infrared and visible images contain 
complementary components of information on a given object [1]. Generally, infrared images 
reveal concealed objects of interest in poor environments but have low resolution. This makes it 
hard to recognize by a human since infrared sensors are sensitive only to temperature differences 
in a scene. Meanwhile, visible images have excellent resolution and can provide much more 
detailed information, since visual sensors are sensitive to frequency reflection of an object under 
inspection. As a result, fusion of infrared and visible images can provide a reliable and precise 
description of a scene, which is useful in subsequent information processing, e.g. target detection 
and intelligent surveillance.  

There has been much research on the image fusion. The methods employed in the field are 
usually divided into two categories: spatial-domain and transform-domain ones. The fusion 
methods based on spatial domain rely directly on grey levels of pixels. The simplest is a spatial 
average method, which takes the average values pixel by pixel. Another fusion method based on 
the principal-component analysis uses a basic idea of ‘component substitution’. Along with 
simplicity, there come several undesirable side effects, including contrast reduction. As a third-
generation method based upon artificial neural network, a pulse-coupled neural network (PCNN) 
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can also be used in the image fusion. It can be qualified as a spatial-domain method since the 
PCNN-based fusion generally takes the source images as external stimuli. In our previous work [2], 
we have studied the PCNN and proposed a modified adaptive dual-channel PCNN for infrared-
and-visible image fusion. 

In the transform domain-based fusion methods, the source images are first decomposed into a 
sequence of subband images through a specific mathematical transformation structure, and then 
some fusion rules are applied to determine so-called subband coefficients [3]. At last, a resultant 
fused image is formed by the corresponding inverse transform. The mathematical transform is well 
known as a multiscale geometric analysis (MGA). The MGA includes Laplacian pyramid (LP), 
discrete wavelet transform (DWT), shift-invariant DWT (SIDWT), nonsubsampled contourlet 
transform (NSCT), shearlet transform, nonsubsampled shearlet transform (NSST), and some other 
varieties. The NSCT has initially been suggested by Da Cunha et al. [4] in 2006. It represents fully 
shift-invariant, multiscale and multidirectional transform scheme, which have been successfully 
used in the image fusion [5–7]. 

In 2008, Easley [8] has proposed a sparse directional-image representation of the NSST, 
which combines nonsubsampled Laplacian-pyramid transform with different shearing filters. In 
contrast to the NSCT, the NSST absorbs some recent developments in the MGA field and shows a 
satisfactory fusion performance, including better sparse-representation ability and much lower 
computational costs. In addition, the NSST manifests a shift-invariant property. It is hoped that 
further research in the area of image fusion using the NSST domain can be promising and 
competitive. To join together the advantages of different approaches, a number of fusion methods 
have been suggested, which are based on the combination of transforms [9]. For instance, Xiang et 
al. [10] have developed a fusion algorithm for the infrared and visible images by combining the 
NSCT with the dual-channel unit-linking PCNN. The experiments have testified that this hybrid 
method can significantly improve the fusion performance and outperforms the individual DWT- or 
NSCT-based methods. 

Unlike the MGA tools, the approach of compressive sensing (CS) describes natural signals 
using a sparse linear combination of columns of an overcomplete dictionary. Being different from 
a limited dictionary in the multiscale transform, the CS uses an overcomplete dictionary in which a 
column is called as a signal atom. Overcompleteness is the most prominent characteristic of 
dictionaries in the CS theory. It indicates that the number of signal atoms is larger than the 
dimension of this signal, which ensures more meaningful and complete representation of source 
signals than that used by the traditional multiscale transforms. The CS theory reveals that the 
coefficients corresponding to the natural signals are sparse. 

In the present work, we develop a novel fusion method of the infrared and visible images, 
which is based on the NSST and the CS theory. In frame of this method, the source images are 
first decomposed using the NSST, and then a fusion rule based on local-region energy maximum-
choosing is used for low-frequency subbands. When choosing a maximum for the high-frequency 
subbands, we present another definition of local-region energy based on block compressive-
sensing sampling (BCSS). After applying the inverse NSST, we arrive at a resultant fused image. 
Our experiments performed for a number of images and our computation results illustrate both the 
efficiency and robustness of our fusion method. A comparison with some common MGA-based 
fusion methods has also been carried out. 

The article is organized as follows. In Section 2, the NSST and CS theories are briefly 
reviewed. In Section 3, we describe in detail our method for fusing infrared and visible images, 
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which is based on the NSST and the BCSS. Experimental results associated with five standard 
image datasets are documented and compared in Section 4. Finally, we draw conclusions in 
Section 5. 

2. Related work 
2.1. NSST theory 
The NSST rests upon the nonsubsampled Laplacian-pyramid transform and several different 
combinations of the shearing filters. It is known that the NSST is a shift-invariant version of the 
shearlet transform. In order to eliminate the effects of upsampling and downsampling, the NSST 
utilizes nonsubsampled Laplacian-pyramid filters as a substitute for the Laplacian pyramid filters 
used in the shearlet transform. As a consequence, the NSST manifests shift-invariance, along with 
multiscale and multidirectional properties [11].  

The NSST process involves two stages, a multiscale decomposition and a multi-directional 
decomposition. The nonsubsampled Laplacian pyramid is utilized to implement the multiscale 
property by using two-channel nonsubsampled filter bank. One low-frequency subband and one 
high-frequency subband are obtained at each nonsubsampled Laplacian-pyramid decomposition 
level. The subsequent nonsubsampled Laplacian-pyramid decompositions are implemented to 
decompose the low-frequency subband iteratively and capture singularities present in the image. 
The multidirectional property of the NSST is implemented using improved shearlet filters. The 
latter are formed through avoiding downsampling, to satisfy the property of shift-invariance. The 
shearlet filters allow multidirection decomposition for the high-frequency subband at each level. 
They produce 2l  directional subbands of the same size as the source image [11, 12]. More details 
on the subject matter can be found in Ref. [8]. 

2.2. CS theory 
The CS theory [13] has recently attracted huge attention in the areas of applied mathematics and 
signal processing, since it can surpass the common limits of Nyquist sampling theory. The CS is 
built upon the fundamental fact that, in a suitable basis or dictionary, many signals can be 
represented using only a few non-zero coefficients. A nonlinear optimization can then enable 
recovering of such signals from the very few measurements. In this section, we will review in brief 
the basic CS theory. 

Theoretical foundations of the modern signal processing have been described in well-known 
pioneering works by Kotelnikov, Nyquist, Shannon and Whittaker on sampling continuous-time 
band-limited signals. Their results gave demonstrated that any signals, images, videos or other data 
can be exactly recovered from a set of uniformly spaced samples taken at a so-called Nyquist rate, 
which is twice the highest frequency present in the signal under interest [13]. Unfortunately, for 
many important and emergence applications the resulting Nyquist rate is so high that we end up 
with far too many samples. Alternatively, building the devices capable of acquiring samples at a 
necessary rate can simply turn out to be too costly, or even physically impossible [13].  

To solve the problem, one can employ the methods of transform coding or the CS. The 
transform coding relies typically on finding a basis that provides sparse or compressible 
representations for the signals. The CS enables potentially large reduction in the sampling and the 
computation cost for the case of sensing signals which have sparse or compressible representations. 
Rather than sampling at first at a high rate and then compressing the sampled data, we would like 
to find the ways to sense directly the data in a compressed form, i.e. at a lower sampling rate. It is 
proved that a finite-dimensional signal having a sparse or compressible representation can be 
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recovered from a small set of linear nonadaptive measurements [13].  

Consider a real-valued and finite-length one-dimensional signal Nx , which can be 
regarded as an 1N   column vector. If x  is K -sparse, it can be represented as  

x   ,      (1) 
where   is the N N  basis and   the 1N   vector containing only K  non-zero elements. If 
K N , the signal x  is compressible. Then both x  and   are equivalent representations of the 
signal, with x  corresponding to the space domain and   to the   domain.  

In frame of the CS, we do not measure   directly, taking instead the compressive 
measurements 

y x  ,      (2) 

where My  and   denotes the M N  measurement matrix which is fixed and does not 

depend on the signal x . Then, substituting x  into Eq. (1), one can write y  as 

y A    , 

where A    is the M N  sensing matrix [1]. The components of this matrix contain 
significant information for reconstructing the source signal. Since we have M N , resolving   
from y  implies pursuing a solution of an under-determined equation, which represents an NP-

hard problem. Nevertheless, since x  is K -sparse, x  can be reconstructed with high enough 
accuracy after solving a nonlinear optimization problem under certain conditions, such as 
restricted-isometry property and uniform-uncertainty principle [3].  

After nonadaptive linear projecting, the major challenge in the CS is to reconstruct accurately 
the vector x  from a set of incomplete and inaccurate samplings. At present, the relevant 
reconstruction algorithms can be divided into three types: combinatorial algorithms, convex-
relaxation algorithms and greed-pursuit algorithms. The first algorithms are more efficient for 
complex systems though they require somewhat especial samples which are difficult to acquire. 
The second methods are often accompanied with a high computational complexity. Finally, the 
third algorithms reveal both proper computational complexity and commendable reconstruction 
performance. The researchers in the field have developed many greed-pursuit algorithms, 
including matching pursuit, orthogonal matching pursuit, stage-wise orthogonal matching pursuit 
and compressive-sampling matching pursuit algorithm. Since in this work we use the inverse 
NSST to reconstruct the images, we will not discuss the reconstruction algorithms in detail.  

3. Our fusion method 
In this section, we introduce the NSST into the image fusion and suggest a new method for fusing 
the infrared and visible images.  

3.1. The framework of our fusion method 
Let the fused image be F, and the source images be A and B, respectively. We assume that 

the source images have been well detected. Fig. 1 illustrates the framework of our fusion method. 
The main procedures of the method include the following steps: 

(1) apply a J -level NSST to A and B, and obtain the corresponding subband coefficients 
,{ ( , ), ( , )(1 , 1,2, , 2 )}jlJ j

A AC x y C x y j J      and ,{ ( , ), ( , )(1 , 1,2, , 2 )}jlJ j
B BC x y C x y j J     , 

where ( )JC x, y  denote the low-frequency subband coefficients at the coarsest scale, and 
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, ( )jC x, y  the directional high-frequency subband coefficients at the j th scale and in the  th 

direction. Here jl  stands for the directional decomposition level of the NSST at the j th scale;  

(2) use a maximum-choosing fusion rule based on local-region energy to determine the low-
frequency and directional high-frequency subband coefficients. Then the fusion coefficients of the 

fused image F ,{ ( , ), ( , )(1 , 1,2, , 2 )}jlJ j
F FC x y C x y j J      can be obtained. The fusion rule will 

be discussed in detail in the next subsections; 
(3) perform the inverse NSST to the fused coefficients to obtain the fused image F.  

 
Fig. 1. Block diagram of our fusion method. 

3.2. Fusion rule for the low-frequency subband 
The low-frequency subband is an approximate version of the source image and includes usually 
the average greyscale information. Although the simplest way is to use a common averaging 
method, it often results in low contrast. Considering that the infrared sensor is sensitive only to the 
difference of temperatures, a human or any other heat sources are usually very prominent in the 
form of high grey values in the infrared images, and the other parts are usually dark. To capture 
more information from the objects in the infrared images, we employ a maximum-choosing rule 
based on local-region energy for fusion and using a standard sliding-window technique.  

The local-region energy is defined by the L2-norm of the vectorized coefficients within the 
sliding window, and the sliding window contains m n  neighbourhoods of the current pixel: 

1 2
( ) ( )JE x, y C x+u, y+v ,     (3) 

where 
2
  represents the L2-norm of the vector and ( , )u v  the location of the sliding window. 

Then the maximum-choosing fusion rule may by written as 

1 1( , ),       ( , ) ( , )

( , ),     

J A B
AJ

F J
B

C x y if E x y E x y
C

C x y otherwise

  


.    (4) 

3.3. Fusion rule for the high-frequency subbands 
The directional high-frequency subbands represent such details of the source images as edges, 
lines, contours and the region boundaries in sparse-presentation domain. For preserving more 
detailed information and overcoming the defects, we utilize the BCSS technique. 

In the BCSS, each subband X  is divided into blocks of size b b . Then the blocks are 
sampled using an orthogonal random matrix, or a so-called measurement matrix. Suppose that 

,i jX  are vectorized neighbourhood coefficients representing the block centre at the location ( , )i j  

in a raster-scan fashion. The corresponding measurement data ,i jY  are then obtained as 
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, ,i j B i jY X  ,      (5) 

where B  is the 2m b  Gaussian random orthonormal measurement matrix with 2m r b    , and 

(0,1)r  the sampling rate. The reason for utilizing the Gaussian random matrix is that this matrix 

is incoherent with any sparse basis and requires less number of measurements to acquire the salient 
information. Moreover, it can yield better results in the inverse solution and restrict the mean 
errors to project sparse coefficients [14].  

Using the BCSS rather than the random sampling applied to the entire image has several 
advantages. First, the measurement matrix B  is conveniently stored and employed due to its 

compact size. Second, the projection is more flexible since it can send each block after linear 
projection and needs no waiting until the entire image is measured [15]. 

Another definition of the local-region energy based on the BCSS is suggested in this study, 
which is expressed as 

2 , 1
(i, j) i jE Y ,      (6) 

where 1  represents the L1-norm of a vector. Subsequently, the maximum-choosing fusion rule 

for the directional high-frequency subbands may be written as  

, 2 2
,

,

( , ),       ( , ) ( , )
(x, y)

( , ),     

A A B
jF

j B
j

C x y if E x y E x y
C

C x y otherwise






  


.    (7) 

4. Experimental results and their discussion 
4.1. Experimental introduction 
Five sets of fusion experiments have been carried out to show the validity of our fusion method. 
The experimental results have proved that the method achieves a better fusion quality than that 
typical for the common fusion methods, including those based on LP, DWT, SIDWT, NSCT and 
NSST (see Introduction).  

The experimental details are as follows: (1) the NSST decomposition level is equal to 3, the 
directional numbers are 4, 9 and 16, and the corresponding local support of the shearing filters 
amounts to 32, 32 and 16, (2) the sizes of the sliding windows are typically equal to 5 5 , and (3) 
the sampling rate is 0.3. In the other fusion methods based on the multiscale transform, the fusion 
rules all take averages for the low-frequency subbands and use the absolute maximum-choosing 
rule for the high-frequency subbands, whereas the decomposition levels are also 3. The standard 
test images used in our experiments are datasets ‘quad’, ‘octec’, ‘UNcamp’, ‘trees’ and ‘dune’. 
They are available from the website http://www.imagefusion.org. All the experiments have been 
implemented in Matlab 2015a on an Intel Core i3-4000M 2.4GHz CPU PC with 4GB RAM. 

In the fusion-performance comparison, both subjective and objective quantitative evaluations 
are utilized to analyze the quality of the fused images. The quantitative evaluation criteria are 
standard deviation, average gradient, Shannon entropy and mutual information: 

(1) the standard deviation reflects how much variation or dispersion of the greyscale of pixels 
differs from the average value. High-standard deviations indicate that the fusion data points are 
spread out over a large range of values, and so is the fusion quality [3]: 

1
21 1

1 1 1 1( ) ( ( , ) ) , ( , )m n m n
mn mni j i jSD F F i j u u F i j   
         ;   (8) 

(2) the average gradient reflects the features of small-detail contrast and the texture changes. 
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It can characterize the clarity of an image [14]: 
1
2

1 1 2 21
( 1)( 1) 1 1( ) (( ( , ) ( 1, )) ( ( , ) ( , 1)) )m n
m n i jAG F F i j F i j F i j F i j 
           ;  (9) 

(3) the Shannon entropy reflects directly the amount of average information contained in the 
fused image [11]. The larger the Shannon entropy, the more abundant information amount is: 

1

2
0

log
L

i i
i

SE p p




  ,     (10) 

where ip  indicates the probability of pixels whose grey value amounts to i  over the total image 

pixels;  
(4) the mutual information measures similarity of two images, thus reflecting the fused 

quality [16]. The larger the mutual information, the more abundant information is contained in the 
fused image: 

,
,,

( , )
( , ) ( , ) log

( ) ( )
I F

I Fi f
I F

p i f
MI I F p i f

p i p f
 ,    (11) 

where ,I Fp  is the jointly normalized histogram of I  and F , Ip  and Fp  are the normalized 

histograms of I  and F , and i  and f  represent the pixel values of the images I  and F , 

respectively. The mutual information used in this work is calculated by averaging the two 
corresponding values between the source image and the fused image. 

In addition, we evaluate the computational complexity of the fusion methods using the time 
(in seconds) needed for computing the fusion procedure. It is acquired by averaging the 
corresponding values of 20 times of the fusion procedure.  

4.2. Performance results 
The first experiment has been performed with the infrared and visible ‘quad’ images of the size 
496 632 , as shown in Fig. 2a, b. These images are characterized by highly structured statistical 
properties, and there is apparent information lost for the human vision. A better image quality is 
expected for the natural environment. The corresponding fused images are displayed in Fig. 2c–h. 
They are obtained using the fusion methods based upon LP, DWT, SIDWT, NSCT, NSST and the 
method developed in this work.  

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 2. ‘quad’ image dataset and fused images: infrared image (a), visible image (b), and fused images based 
on LP (c), DWT (d), SIDWT (e), NSCT (f), NSST (g) and our fusion method (h). 
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From the viewpoint of human visual system, the results of our method are superior to those 
derived with the other common fusing methods, because almost all of the useful information has 
been transferred into the fused image. In particular, the pedestrians and the cars in the image (h) 
are more prominent from a subjective viewpoint. 

The objective performance characteristics are listed in Table 1, where the best results are in-
dicated in bold. The quantitative values of the first four criteria clearly testify that the fusion 
method suggested in this work enables a better fusion quality in terms of the largest values of 
square deviation, average gradient, Shannon entropy and mutual information. However, our 
method does not achieve the shortest computing time. One of the reasons is that each subband 
image generated by the NSST has the same size as the source image, as follows from the NSST 
property of shift-invariance. The other reason is complicated BCSS calculations needed in frame 
of our method. 

Table 1. Performance results obtained for the fused images. 
Image 
dataset Method Standard 

deviation 
Average 
gradient 

Shannon 
entropy 

Mutual 
information 

Time, s 

LP 0.0664 0.0346 6.2486 0.6503 0.0827 
DWT 0.0632 0.0296 6.0317 0.6457 0.1057 

SIDWT 0.0635 0.0307 6.0780 0.6958 0.3411 
NSCT 0.0626 0.0292 6.0054 0.6809 143.4620 
NSST 0.0625 0.0291 6.0018 0.6847 6.1766 

quad 

Our method 0.0781 0.0480 6.7739 1.3941 17.1521 
LP 0.1077 0.0421 6.4417 0.9167 0.0758 

DWT 0.0919 0.0408 6.4018 0.9346 0.1030 
SIDWT 0.0952 0.0410 6.4020 0.9552 0.3222 
NSCT 0.0908 0.0406 6.3856 0.9619 141.2890 
NSST 0.0903 0.0406 6.3849 0.9618 4.8944 

octec 

Our method 0.1412 0.0514 6.7532 1.4032 15.9276 
LP 0.1154 0.0401 6.5712 0.5151 0.0270 

DWT 0.1125 0.0365 6.4402 0.5010 0.0347 
SIDWT 0.1130 0.0369 6.4538 0.5211 0.0764 
NSCT 0.1123 0.0359 6.4032 0.5292 45.8403 
NSST 0.1122 0.0358 6.3982 0.5281 1.3348 

UNcamp 

Our method 0.1466 0.0438 6.7580 0.8223 4.9475 
LP 0.1089 0.0228 5.9798 0.5011 0.0277 

DWT 0.0987 0.0215 5.9022 0.4861 0.0380 
SIDWT 0.1002 0.0215 5.9029 0.5077 0.0883 
NSCT 0.0972 0.0211 5.8775 0.5076 49.3519 
NSST 0.0969 0.0211 5.8727 0.5079 1.4873 

trees 

Our method 0.1186 0.0241 6.0481 0.6969 5.6890 
LP 0.0604 0.0223 6.0593 0.7136 0.0336 

DWT 0.0572 0.0213 6.0134 0.6950 0.0461 
SIDWT 0.0573 0.0214 6.0151 0.7335 0.0975 
NSCT 0.0563 0.0211 6.0004 0.7321 51.5926 
NSST 0.0562 0.0210 5.9990 0.7314 1.6313 

dune 

Our method 0.0634 0.0268 6.2010 0.9124 6.0572 
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The other four experiments have been carried out on the standard datasets ‘octec’ 
( 480 640 ), ‘UNcamp’ ( 270 360 ), ‘trees’ ( 270 360 ) and ‘dune’ ( 270 360 ). The source 
images and the corresponding fused image are illustrated in Fig. 3 to 6. From the point of view of 
human visual system, one arrives at the conclusions similar to those formulated above for the first 
experiment. Our fusion method not only highlights the targets of interest in the scenario, but can 
also preserves the more detailed information on the edges and textures. The corresponding 
quantitative evaluation results are listed in Table 1. One can find that our method is characterized 
by the best performance parameters, except for the computing time. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 3. ‘octec’ image dataset and fused images: infrared image (a), visible image (b), and fused images based 
on LP (c), DWT (d), SIDWT (e), NSCT (f), NSST (g) and our fusion method (h). 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 4. ‘UNcamp’ image dataset and fused images: infrared image (a), visible image (b), and fused images 
based on LP (c), DWT (d), SIDWT (e), NSCT (f), NSST (g) and our fusion method (h). 

4.3. Discussion 
Following from the experimental data and their comparison, we conclude that our fusion method is 
superior to the traditional MGA-based methods according to both the subjective visual effect and 
the objective quantitative characteristics. As for comparison with the state-of-the-art, below we 
give a brief explanation, using some qualitative arguments. In our previous work [2] we have 
employed the method for fusing the infrared and visible images, which is based on the multiscale 
top-hat transform and the modified adaptive dual-channel PCNN. As mentioned in Introduction, it 
represents in fact a spatial domain method. On the one hand, it inherits the advantages peculiar for 
the spatial-domain methods, such as low computational complexity, fast speed and easy 
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implementation. On the other hand, it also inherits the disadvantage of low contrast, especially 
when comparing with the method suggested in the present work. As a result, the present method 
acquires a perfect fusion effect, failing only in the fusion speed.  

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 5. ‘trees’ image dataset and fused images: infrared image (a), visible image (b), and fused images based 
on LP (c), DWT (d), SIDWT (e), NSCT (f), NSST (g) and our fusion method (h). 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 6. ‘dune’ image dataset and fused images: infrared image (a), visible image (b), and fused images based 
on LP (c), DWT (d), SIDWT (e), NSCT (f), NSST (g) and our fusion method (h). 

The fusion method proposed in Ref. [10] combines the characteristics of multiresolution and 
multidirection of the NSCT and the advantages of global coupling and pulse synchronization of 
the unit-linking PCNN. Similar to our method, both the experiments and the data show that the 
fusion effect is characterized with a high contrast and prominent target information. The 
quantitative evaluation yields in the optimal standard deviation, Shannon entropy and mutual 
information, which are superior to those of the individual DWT- or NSCT-based methods. 
However, the method of Ref. [10] involves the NSCT and the corresponding computing time is 
one order of magnitude larger than that of our method. This can be readily seen from our 
experimental results. Then the computing time of the whole method must be at least one order 
larger than that of our method. Therefore, we draw the conclusion that our method is slightly better. 

5. Conclusion  
In this work we have developed a novel infrared-and-visible image fusion method based on the 
NSST and the BCSS. As a recently suggested multiscale geometric analysis tool, the NSST is not 
only remarkably superior to the other common tool in terms of information capturing and 
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computational-costs saving, but also overcomes a lack of shift-invariance in the shearlet transform. 
The NSST is used to decompose and reconstruct the subband coefficients. Then the two measure 
forms of local-region energy are presented for maximum-choosing fusion rules, one of which is 
based on the L2-norm of the vectorized neighbourhood coefficients within a sliding window, and 
the other utilizes the L1-norm of the measurements of block CS sampling. This method is capable 
of merging the complementary information, highlights the targets of interest and improves image 
contrast and details. We have compared our method with several common fusion methods based 
on the multiscale transform, including the LP, the DWT, the SIDWT, the NSCT and the NSST. 
The experimental results illustrate the validity and efficiency of our method in terms of the 
standard deviation, the average gradient, the Shannon entropy and the mutual information. Visual 
human perception of the fused images also indicates that the method suggested in the present work 
is successful in transferring the complementary information.  
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Анотація. Злиття зображень використовують для об’єднання вихідних зображень однієї і 
тієї ж сцени в єдине злите зображення з надійнішою і точнішою інформацією, яка 
годиться для подальших завдань обробки. Ми представляємо новий метод злиття 
інфрачервоних і видимих зображень, який базується на безнаповнених шеарлет-
перетвореннях (БНШП) і блочній вибірці, заснованій на стиснутому зчитуванні (БВСЗ). 
Підхід вибірки зі стиснутим зчитуванням широко використовують у різних областях. Він 
представляє собою основу методу стиснення вибірки з низьким рівнем сигналу, який 
застосовують для рідкісних або розсіяних сигналів. Ми досліджуємо техніку БВСЗ для 
злиття зображень і пропонуємо метод злиття, в якому БНШП застосовують для 
розкладання та реконструкції зображення, а двопараметричні форми локальної енергії 
області представлено для правил злиття для піддіапазонних коефіцієнтів БНШП, 
заснованих на обранні максимуму. Наш підхід перевірено на п’ятьох стандартних наборах 
інфрачервоних і видимих зображень. Відповідні результати порівняно з даними, 
одержаними за допомогою декількох традиційних методів злиття. Результати 
експериментів ілюструють коректність і ефективність нашого методу. Проаналізовано 
ефективність та надійність злиття зображень за допомогою кількох мір якості 
зображень. 


