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Abstract. We have developed analytical approach to determine the orientations of 
cross sections of optical indicatrix (OI) around the optic axes (OAs) in biaxial 
crystals. It has been found that the angular distribution of cross sections of the OI by 
the planes perpendicular to the directions close to the OA reveals a topological 
defect of OI orientations with the strength equal to ½. When a conical circularly 
polarized wave with cone’s axis coinciding with the OA in a biaxial crystal 
propagates through a sample, a singly charged optical vortex is generated. We have 
shown that splitting of a single OA in optically uniaxial crystals into two OAs due to 
electrooptic effect is accompanied by the topological reaction that involves dividing 
a single defect with the unit strength into two defects with the strengths equal to ½. 
We have experimentally discovered topological dipoles that consist of topological 
defects with the strengths of each defect within the pair equal to +½ and –½. 
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1. Introduction 
Optical vortices bearing orbital angular momentum can be used in different branches of 
technologies, e. g. quantum information processing [1], microparticles manipulation [2] and beam 
focusing below the diffraction limit [3]. Following from the principles of singular optics [4], novel 
possibilities arise if one uses both spin and orbital angular momentums in an optical beam, which 
represent the entities closely related tp quantum computing, cryptography, and quantum 
teleportation [5–7]. Since the spin angular momentum can acquire only two different values 
(s = +1 or s = –1 in the units of Planck constant   [8]) and the optical angular momentum can, in 
principle, be infinite ( 0, 1, 2,...m    ) [9], the information can be encoded by multiplying a 

number of distinguishable states. In this sense a photon can carry arbitrarily large amount of 
information distributed over its spin and orbital quantum states [10]. Hence, studies of the basic 
principles of generation, propagation and interaction of optical vortex are very important for the 
optical technologies. 

Optical vortices are generated with the aid of various techniques, which in fact can be divided 
into two different groups. The methods based on optically isotropic and inhomogeneous media 
(e.g., an inhomogeneous distribution of material density) belong to the first group. When 
propagating through these media, an initially nearly plane wave undergoes a perturbation of its 
phase front, with appearance of scalar-field singularities or optical vortices. These experimental 
techniques deal, e. g., with computer-generated holograms and optical fibres [4, 11–13]. The 
second group embraces the methods that lead to appearance of singularities of vector fields. Such 
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singularities can be induced by different inhomogeneous fields [14–19] under propagation of 
nearly parallel beams through crystals or glasses. The effect can be observed if conical beams 
propagate in optically uniaxial crystals along the optic axis (OA) direction [20–25]. The same is 
true for the case of optically biaxial crystals, provided that the beam propagates along one of the 
OAs under the conditions of conical refraction [26–28]. 

In the case of uniaxial crystals, distribution of orientations of the cross sections of optical 
indicatrix (OI) around the OA reveals a topological defect in its centre, with the strength equal to 
unity. This leads to appearance of a doubly charged optical vortex in one of the components of 
emergent circularly polarized wave [23, 29]. This fact can be explained by the relation suggested 
in the work [30] for liquid crystalline q-plates having a topological defect of director orientation in 
its centre. The electric field of the emergent light can be written as [30] 

02 21 1
( ) cos sin

2 2
i q iout

A AE E iE e
i i

       
       

,   (1) 

where q is the strength of topological defect, 2m q   the vortex charge,   the phase 

difference, 0  the initial orientation of director in the q-plate, and AE  and ( )outE   are 

respectively the incident and emergent wave amplitudes. 
The first term in Eq. (1) describes the plane wave with the same spin angular momentum as 

in the incident wave (i.e.,  ), while the second one corresponds to the wave with the helical 
front, which carries a nonzero orbital angular momentum. When the crystal symmetry lowers from 
uniaxial to biaxial, the orbital vortices with unit charges can be generated [31] whenever conical 
circularly polarized light beams propagate along each of the OAs. This process seems to be 
explained as a result of conservation of the optical angular momentum taking place under splitting 
of OAs, i.e. we have 2     . However, the law of conservation of the orbital angular 
momentum is applicable only in the case of axial symmetry, which does not hold in the case 
described above. 

The following question appears in connection with the conical refraction: can a singly 
charged optical vortex be generated when the light propagates along one of the OAs in biaxial 
crystals under the condition that the angle of conical refraction is negligibly small (e. g., in case of 
small birefringence)? It has been shown in a number of works [31–33] that a polarization 
singularity (a so-called C-point) appears in the emergent light propagating along the OAs in 
biaxial crystals. The distribution of polarization states around this polarization singularity testifies 
that this C-point represents a topological defect with the strength equal to ½. It seems to be evident 
that a specific distribution of polarization states that includes the topological defect in the centre of 
beam should be caused by the same distribution of the cross sections of OI. Nonetheless, to our 
best knowledge, this effect has not been proved analytically.  

In the present work we derive phenomenological relations allowing one to conclude that the 
OAs in optically biaxial crystals represent topological defects of OI orientation with the strength 
equal to ½. 

2. Analytical method and results 
The OI equation in the coordinate system XYZ can be written as 

2 2 2

2 2 2 1
x y z

x y z
n n n

   .     (2) 
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Let us assume that the inequalities nX < nY < nZ hold true. Then the transformation of the 
coordinate system XYZ under successive rotations by the angle   around the Z axis and the angle 

  around the Y' axis (see Fig. 1) can be represented by the relations 
cos sin 0
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where ( )Z R  and  Y R  denote the matrices of rotations around the Z and Y' axes, respectively. 
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Fig. 1. Transformation of coordinate system 
XYZX'Y'Z'X''Y''Z'' occurring under successive 
rotations by the angle   around the Z axis and the 

angle   around the Y' axis. 

 
The resulting transformation matrix  t , R  reads as 
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The coordinates in the doubly primed coordinate system and the coordinates in the initial 
system are linked by the relations 
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sin cos

sin cos sin sin cos

X X Y Z
Y X Y
Z X Y Z

    
 
    

   
   
   

.  (6) 

The matrix  1 ,t  R  of the inverse coordinate transformation X''Y''Z''XYZ can be written as 
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t
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Quite naturally, the inverse-transformation matrix represents a transposed direct-
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transformation matrix, i.e.    1
t t, ,T    R R  (see Eqs. (5) and (7)). Now one can express the 

coordinates in the initial coordinate system in terms of the coordinates in the doubly primed 
system: 
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.   (8) 

Substituting Eqs. (8) into Eq. (2), one obtains the OI equation in the doubly primed 
coordinate system: 
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If the wave vector of the incident light is directed along the Z'' axis, the cross section of OI by 
the plane X''OY'' represents an ellipse. Its principal axes define the orientations and the refractive 
indices of the eigenwaves that propagate along a given direction. The equation of this ellipse can 
easily be obtained from Eq. (9) under the condition Z" = 0: 
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If we have В  0, the principal axes of the ellipse are rotated about the coordinate axes X'' and 
Y'' by the angle 

 2 2
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B


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.   (12) 

Then the refractive indices nI and nII of the eigenwaves propagating along the direction Z'' are 
as follows: 

  2 2

, 2
2

4I II
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AC B
   




,   (13) 

where the signs «+» and «–» correspond to nI and nII, respectively. After the angle   for the light 

propagation directions close to the OA in biaxial crystals is known, one can determine the 
orientations of elliptical cross sections of the OI for the above directions. 

To be specific, we consider as example a biaxial crystal of tellurite (TeO2), which belongs to 
the symmetry group mmm [34]. Its refractive indices are equal to nX = 2.00, nY = 2.18 and 
nZ = 2.35 [34]. Fig. 2 displays the maps of angular distributions of the optical birefringence and the 
orientation of slow principal OI axis, which are calculated using the theoretical relations derived 
above and the optical parameters of TeO2. 

One can see from Fig. 2 that the orientations of the cross sections of OI around the OA 
correspond to a spatial distribution that involves a topological defect in its centre. The strength of 
this defect is equal to ½. Now it becomes clear why the conical circularly polarized incident beam 
propagating along the OAs in biaxial crystals induces a singly charged vortex in the orthogonal 
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circular polarizations of the emergent beam (see the second term in the r. h. s. of Eq. (1)). We have 
also to notice that lowering of the crystal symmetry from uniaxial to biaxial (e. g., under some 
external field applied to a sample) has to be accompanied by a topological reaction. The latter 
would imply division of the topological defect with the strength 1, which is peculiar for the 
uniaxial crystals, into two defects with the strengths ½, which are peculiar for the biaxial crystals. 
Below we demonstrate this fact experimentally. 
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Fig. 2. Distribution of optical birefringence calculated in the vicinity of OA in TeO2 crystals. The length of 
segments is proportional to the birefringence value  n = nI – nII, while their orientations indicate polarization 
directions of the slow wave (i.e., that with the refractive index nI). 

In our polarimetric experiment, we have used a LiNbO3 crystal of which faces are perpen-
dicular to the principal axes X, Y and Z of the Fresnel ellipsoid. In other words, we have X a , 

Y m  and Z c , where a and c denote the crystallographic axes, and m is the mirror symmetry 

plane. The sample has a parallelepiped shape with the sizes equal to 25.0 along the Z axis and 
9.2 mm along the X and Y axes. The electric DC voltage 500 V has been applied along the X axis. 

A circularly polarized optical beam propagating along the Z axis has been focused by an 
optical lens at the entrance surface of our sample. Then the beam is analyzed by a linear rotating 
polarizer and finally falls at the CCD camera. As a result, one obtains some angular distribution of 
the phase difference and the orientation angle of OI. The relevant experimental results are 
presented in Fig. 3. Note that the method used for determining these parameters has been described 
in detail in our work [14]. 

As seen from Fig. 3a and Fig. 3b, nine topological defects (TDi) of OI orientation exist in the 
crystal under zero voltage. These are the central defect TD0 and the four pairs of defects (TD1 and 
TD2, TD3 and TD4, TD5 and TD6, and TD7 and TD8), which in fact represent topological dipoles. 
The central defect TD0 has the init strength. The lateral defects have the strength modules equal to 
½ and the opposite signs of the strength within each pair. Moreover, one can detect some 
additional dipoles of topological defects at still larger angles of beam divergence. The phase 
difference in the places where all the mentioned defects are located is equal to 2πn, where n is an 
integer and therefore it looks as if it is equal to zero. (see Fig. 3a). The existence of these defects 
agrees well with the simulation results presented in Ref. [35]. However, we have not observed a 
topological defect between the two defects in the dipoles, which might have led to appearance of 



Krupych O. et al 

Ukr. J. Phys. Opt. 2017, Volume 18, Issue 3 136 

singly charged optical vortex, as predicted in the work [35]. Application of the voltage 0.5 kV 
leads to splitting of the central defect TD0 into two defects, TD01 and TD02, of which strengths are 
equal to ½. This process can be described as a topological reaction that results in division of the 
defect with the unit strength into two defects with half-unit strengths. This process is described by 
the equation 1 = ½ + ½ in the units of  . At the same time, the two diametrically opposite dipoles 
consisting of topological defects move away from the beam’s cone axis, while the other two defect 
pairs move towards it. 

3. Conclusions 
In the present work we have developed a simple analytical approach that enables determining of 
orientation of the cross sections of OI around the OAs in optically biaxial crystals. We have found 
that the angular distribution of the cross sections of OI by the planes perpendicular to the 
directions close to the OA reveals a topological defect of OI orientations with the strength equal to 
½ . This topological defect corresponds to the outlet of OA in the biaxial crystals. This statement 
implies that, if the conical circularly polarized incident beam propagates along the OA in biaxial 
crystals, a singly charged optical vortex is generated in the outgoing beam, with the circular 
polarizations of the opposite handednesses. Notice that this explanation of vortex generation does 
not involve the effect of conical refraction. 

We have shown experimentally that splitting of a single OA in uniaxial crystals into two OAs 
is accompanied by the topological reaction that divides a defect with the unit strength into two 
defects with the strengths ½. At the same time, we have revealed at least four pairs of additional 
topological defects. These are topological dipoles with the strengths of each defect within the pair 
equal to +½ and –½. 
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Fig. 3. The distributions of phase difference (panels (a) and (c)) and orientation angle of OI orientation (panels 
(b) and (d)) in LiNbO3 crystals within the angular beam aperture. Panels (a), (b) and (c), (d) correspond to zero 
voltage and V = 0.5 kV. 
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Анотація. У роботі представлено аналітичний підхід до опису орієнтації перетинів 
оптичних індикатрис за умови просвічуванні оптично двовісного кристала в довільному 
напрямку. Виявлено, що кутовий розподіл перетинів оптичних індикатрис площинами, 
перпендикулярними до напрямків, близьких до оптичної осі двовісного кристала, містить 
топологічний дефект орієнтації оптичних індикатрис із силою ½. При поширенні конічної 
циркулярно поляризованої хвилі вздовж оптичних осей у двовісних кристалах буде 
генеруватися вихор одиничного заряду. Показано, що розщеплення єдиної оптичної осі в 
одновісному кристалі внаслідок електрооптичного ефекту і відповідна поява двох 
оптичних осей супроводжується топологічною реакцією розпаду дефекту з силою 1 на два 
дефекти з силою ½. Експериментально виявлено топологічні диполі, які складаються з пари 
топологічних дефектів із силами +½ і –½. 


