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Abstract. To improve the quality of images taken with spatial cameras, we measure 
sub-pixel shifts between two adjacent images, using a joint transform correlator 
(JTC). First we describe the principles of measurements of the image shifts based on 
the JTC. Then, considering discrete pixel-like structures of a CCD and a spatial light 
modulator, we discuss relationships among the parameters of JTC components, 
issuing from the sampling theorem and the Fourier optics principles. Following from 
these points, we select the devices needed and design the Fourier lens to construct a 
compact JTC. Finally, we build the experimental platform and estimate the 
efficiency of measurements of the image shifts. The results show that sub-pixel 
image shifts can be measured very accurately, with the errors being less than 
0.1 pixel under condition that the image shifts are within 1 pixel. 

Keywords: joint transform correlator, image shifts, optical measurements, compact 
design 

PACS: 42.15.Eq  
UDC: 535.8 

1. Introduction 
With increasing resolution of remote sensing cameras, image shifts become a major factor that 
affects the image quality. Because of complex working conditions associated with satellites, the 
image shifts are random and reveal almost no regularity. To decrease these shifts, the attitude of a 
satellite is required to be controlled in a very stable manner. This reduces the vibrations of the 
satellite but increases largely the cost and complexity of the apparatus. As a result, various image 
stabilization methods have been extensively studied. They can be divided into two kinds, a digital 
image method and an optical stabilization one [1, 2]. No matter which of the methods is being used, 
the measurements of the image shifts represent a first step and a key procedure. 

Being accompanied by the recent evolution of spatial light modulators (SLM) and CCD 
cameras, joint transform correlators (JTCs) have evolved from a purely optical system towards a 
hybrid computer-controlled photoelectric system. Now JTCs reveal a number of merits of the 
optical processing, e.g. fast parallel processing, large capacity and high speed, and can also be pro-
grammed conveniently. JTCs have been widely used in the image recognition and target detection 
[3–5]. In the present study, we use a JTC to measure the image shifts. Our idea is to input sampled 
adjacent sequential images into the JTC and compute the appropriate correlations basing on the 
distances between the actual cross-correlation peaks and the theoretical ones. The image shifts can 
be accurately obtained in this way. 

The outline of this article is as follows. First the principles of measurements of the image 
shifts based on the JTC are given. Then, considering a discrete pixel-like structure of CCD and 
SLM, we discuss the relationships among the parameters of these devices, issuing from the Fourier 
optics fundamentals. Then a miniaturized JTC is designed and an experimental platform is built. 
Finally, we verify the measurement efficiency and the accuracy achieved for the image shifts. 
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2. The measurement principle of the image shifts based on JTC 
The structural scheme of an optoelectronic JTC suggested by us is displayed in Fig. 1. To make the 
structure of our JTC simple and compact, we employ the JTC constructed using a single Fourier 
lens (FL) and a single SLM. The reference image r(x, y) and the target image t(x, y) are loaded 
along an x direction in a plane P1. Their centres are located at the points (br, 0) and (–bt, 0). 
Compared with the reference image, the scene in the target image is moved some distances x and 
y along the x and y directions, respectively. Then the input of the JTC is given by 

( , ) ( , ) ( , )       r tE x y r x b y t x x b y y .   (1) 
 

 
Fig. 1. Structural scheme of our optoelectronic JTC. 

After transformation performed by the FL, one can calculate the joint spectrum G(, ) in the 
Fourier plane as 

 ( , ) ( , ) exp[ 2 ] ( , ) exp 2 [( ) ]r tG R i b T i b x y                 ,  (2) 

where R(ξ, η) and T(ξ, η) are the Fourier transforms of r(x, y) and t(x, y), respectively. There is a 
CCD camera in the Fourier plane, which records the intensity distribution: 
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, (3) 

where the symbol * implies complex conjugation. Controlled by a digital processing and control 
unit (see Fig. 1), the power spectrum is loaded to the SLM and transformed again by the FL. The 
complex amplitude distribution in the output plane of the system then reads as 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )* ( , )
( , ) ( , )* ( , )

r t

r t

C x y t x y t x y r x y r x y t x y r x y x b b x y y
r x y t x y x b b x y y




          

      
, (4) 

where the symbols * and   now denote respectively convolution and correlation, and   implies 
the Delta function. The first two items are auto-correlations and the last two cross-correlations. As 
evident from Eq. (4), when the reference image and the target image contain the same information, 
with a slight shifts x and y, these shifts can be measured by finding the displacements between 
the actual cross-correlation peaks and the relevant ideal points [±(br+bt), 0]. 

3. Analysis of relationships among the parameter of JTC components  
Meanwhile, no construction parameters of the system components, such as the SLM, the lens and 
the CCD, have been considered. In any practical situation, both the SLM and the CCD contain 
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discrete pixels that affect the image pattern according to the sampling theorem. Therefore we 
should study the relationships among the construction parameters of these components. Because 
the reference and target images are displayed along the horizontal direction on the SLM, we 
discuss only a single x direction for simplicity. We suppose that, for the SLM shown in Fig. 2, the 
distance between the pixels is equal to d1 and the width of the transparent zone is w1. For the 
image loaded to the SLM, the sampling interval is given by the sampling theorem as d1. Then the 
maximum spatial frequency which can be distinguished by the SLM reads as 

max
1

1
2d

   .     (5) 

 

Fig.2 The pixel structure of SLM 

 

The sampled input image g(x1) can be described in the plane P1 as [6]  

1 1
1 1 1 1

1
( ) ( ) ( ) rect rect





             
        


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,  (6) 

where Lx is the total SLM width in the x direction and the integer m corresponds to the m-th order 
sampling. Supposing that there are N1 pixels in the x direction, we obtain Lx = N1d1. If the plane P1 
is illuminated by a coherent plane-wave wave with the unit amplitude and a transformation is done 
by the FL, we get the frequency function G(ξ) in the output plane P2: 

1 1
1 1

1( ) ( ) sinc( ) sinc( )    




  
     
   

 x x
m

mG E w w L L
d d

,  (7) 

where ξ = x2/(λf) and x2 denotes the x coordinate in the plane P2. 
According to Eq. (7), the spectrum of the input image is periodic because of the discrete sam-

pling by the SLM pixels, whereas the interval of the cycles is (λf)/d1 following from the diffraction 
principle. The width and the power distribution of the higher-order spectra are similar to those of 
the zero-order spectrum, with the difference that their amplitudes are modulated with the function 
sinc(w1ξ). The latter induces a rapid decrease in the spectral powers with increasing order m. 
According to the diffraction spectrum shown in Fig. 3 and Eq. (7), the central spot represents a so-
called diffraction point spread function of the Fourier transform system. Its width is 2λf/(N1d1), so 
that we have 

2 2
1

fN d
d


 ,     (8) 

where N2d2 is the CCD width along the x direction. As a result, we obtain the inequality 

2 2 1N d df


 .     (9) 
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Usually, a joint power spectrum (JPS) can be better detected by the FL with a longer focal 
length. Hence, we select the focal length of the FL as 

2 2 1N d df


 .     (10) 

On the other hand, the JPS is formed by interference among the same points coming from the 
target and reference images. The spatial frequency of the fringe is (br+bt)/(λf), according to the 
interference theory. When the JPS is detected with the CCD, the spatial resolution of the latter 
should be higher than that of the JPS, i.e. we have the condition 

2

1
2

r tb b
f d


 ,     (11) 

or 
2 1

22 2r t
N dfb b

d


   .    (12) 

Eq. (12) describes the relationships among the distance between the target and reference 
images, the pixel size of the CCD, the focal length of the FL, and the wavelength of the laser.  

The JPS sampled by a pixel of the CCD can be described as follows: 

2 2

2 2 2
( ) ( ) * rect rect 
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




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         


m

d f fP G n
f d N d

. (13) 

Then, controlled by a computer, the JPS is re-input into the SLM. It can be written as 

2 2

2 2 2
( ) ( ) rect rect   
   




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         


m

d f fP G M n
f d N d

. (14) 

Here ξ’ is the spatial frequency coordinate of the JPS displayed at the SLM, ξ’ = ξ/M, 
M = d2/d1 is a scaling factor introduced by the difference in the pixel sizes of the CCD and the 
SLM, and N2d1 is the JPS width at the SLM. Because the N2d1 value is much larger than w1, the 
diffraction effect can be ignored whenever the SLM is illuminated by a parallel laser beam. After 
Fourier transforming by the lens, the optical field distribution in the output plane is given by [7] 

2 1 1
2

2 2 2
1

( ) sinc
( )




           
  
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w w xC x
fn fd C x x

d

.  (15) 

Here 

 
Fig. 3. Diffraction pattern caused by a discrete pixel-like structure of our SLM. 



Design of compact 

Ukr. J. Phys. Opt. 2017, Volume 18, Issue 1 59 

2 2 2 2 2
2

2 2 2 2

2 2 2 2

( ) ( ) rect rect

rect rect

rect rect


                                      

                     
          

                
        

x x x xC x G M r r
M WM M WM

x x x xt t
M WM M WM

x x x xr t
M WM M WM

 

 

2

2 2 2 2
2rect rect





 
      

 
                                      

r t

r t

x M b b

x x x xt r x M b b
M WM M WM

, (16) 

where W is the width of each input image. Note that the constant factor 1/M4 in Eq. (16) is ignored.  
It is seen from the above equations that, since the JPS is recorded by the CCD and is reloaded 

into the SLM again, the multi-level diffraction is induced in the output plane and the optical field 
is distributed periodically. In Fig. 4, a dashed line represents the modulation effect of the function 
sinc(w1x2/λf) in Eq. (15), whose first zero points are located at ±λf/w1, and the curve inside each 
dashed rectangle is determined by the function C(x2), which denotes the output of each level 
correlation. The centres of each level correlations are located at (nλf)/d1, where n = 0, ±1, ±2, … . 
The corresponding intensity decreases quickly with increasing n, and the distance between the two 
adjacent correlation peaks λf/d1 is determined by the pixel size of the SLM. Only a zero-level 
correlation peak is detected if one measures the image shifts by recording the locations of the 
correlated peaks. 

( )r tM b b  ( )r tM b b
1d
f


1d
f

1w
f


1w
f 2x

'
2( )C x

 
Fig. 4. Output spatial distribution of the correlation signal. 

According to Eq. (16), there are four terms in the zero-level correlation. The first and the 
second ones are auto-correlation peaks, both of them being overlapped at the origin, with the width 
2MW. The third and the fourth terms are cross-correlations related to the image shifts, which 
should be detected accurately. Their centres are located at ±M(br+bt) and the width of each is also 
equal to 2MW. To avoid overlapping among the auto-correlations and cross-correlations, one has 
to meet the condition 

( ) 2r tM b b MW  ,    (17) 

or 
2r tb b W  .     (18) 

The cross-correlations of the zero and first levels should also be avoided: 
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1
( )

2r t
fM b b MW

d


   .    (19) 

Since we have M = d2/d1, the above equation can be rewritten as 

22r t
fb b W

d


   .    (20) 

Comparing Eqs. (12) and (20), one can see that the sum (br + bt) satisfying Eq. (20) is enough. 
Because the pixel sizes of the SLM and the CCD used in the JTC are restricted by the 
manufacturing technology, they cannot be selected at random. To satisfy the relationship deduced 
above, the other parameters (i.e., the focal length of the FL, the width of the input image, and the 
distance between the target and reference images) must be adjusted properly basing on the above 
equations. 

4. The design of miniaturized JTC 
4.1. Selection of the components 
According to our design procedure, the SLM and the CCD are selected first of all since, as mentio-
ned above, their parameters are restricted by the manufacturing technique. An electrically addres-
sed device TFT-LCD XGA3 made by the Forth Dimension Displays Co. Ltd, England, has been 
used as an SLM. Its spatial resolution is 1024×768, the pixel pitch 18×18 μm2, the pixel dimensi-
ons 13×10 μm2, and the whole size 18.5×13.9 mm2. We have used a device EL-400ME made by 
DTA Co. Ltd, Italy, as a CCD. Its resolution is 768×512, the pixel dimensions 9×9 μm2, and the 
total size 6.9×4.6 mm2. A He-Ne laser with the wavelength λ = 0.6328 μm has been used as a mo-
nochrome light interference source. Then the focal length of FL can be calculated with Eq. (10): 

2 2 1 768 9 18 196.6 mm
0.6328

N d df


 
   .   (21) 

Since the SLM should be completely illuminated by a parallel laser beam, the aperture of the 
lens should be no less than the length of the SLM diagonal: 

2 218.5 13.9 23 mm  D     (22) 

where D is the aperture of the FL. 

4.2 The design of Fourier lens 
To make the construction of JTC compact, we use a long-distance Fourier transform lens 
consisting of a positive lens and a negative lens (see Fig. 5). Since the above lenses are separated 
in the optical system, the main plane of the latter is shifted in the forward direction. Then the 
working distance is less than the focal length, which can efficiently shorten the total size of the FL.  

Assume that the focal lengths of the lenses L1 and L2 are equal respectively to f1
’ and f2

’, the 
focal length of the FL is f ’, the distance between L1 and L2 is t1, and the distance from L2 to the 
CCD (i.e., to the focal plane) is t2. Since, according to Eqs. (21) and (22), we have f ’  = 196.6 mm 
and the aperture D ≥ 23 mm, we let the latter parameter to be D = 25 mm. Applying a simple 
geometrical optics, we obtain 

2 1 1 2

1 1 1
t f t f
 

 
,    (23) 

1
1 2 1 2

1 1 1 1 1t
f f f f f
    

    
,   (24) 
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1 2L t t  ,     (25) 

Based on Eqs. (23) and (24), we express the parameter t2 as 

2 1
2

2 1

( )f f tt
f t
  


 

.     (26) 

To make the JTC shorter, we substitute Eq. (26) into Eq. (25) and use the condition dL/dt1 = 0: 

1 2 min 2
2

1 1 ft t t f
f

 
       

,   (27) 

min 2
1

2

( )f t ff
f f

  
 

.    (28) 

Fig. 6 illustrates the relationships among the working distance 2t1 and the focal lengths f1
’ and 

f2
’, which follow from the above equations for the particular case f ’ = 196.6 mm. 

If we have f2
’ = –40 mm, Eqs. (27) and (28) result in t1 = t2 = 57.28 mm, f1

’ = 80.84 mm, 
D1 = 25 mm and D2 = 7.29 mm. Hence, the relative apertures of L1 and L2 are equal to 1 : 3.2 and 
1 : 5.5, respectively. If the focal length of L1 is adjusted and f1

’ = 100 mm, the re-calculated 
working distances are t1 = 80.34 mm and t2 = 38.67 mm. Then the total length of the FL becomes 

1 2 80.34 38.64 118.98 mm    L t t .   (29) 

L1 L2

t 1 t2

D

 
Fig. 5. Schematic diagram of a long-distance optical system. 

 

Fig. 6. Illustration of relationships among the working distance and the parameters f1’ and f2’. 
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Finally, the aperture of the lens L2 then reads as 

1 1
2

1

100 80.34 25 5 mm
100

 
    


f tD D

f
   (30) 

After adjusting properly, the relative apertures become D1/f1
’ = 1 : 4 and D2/f2

’ = 1 : 8. Although 
the total length is now a little longer, the relative apertures of the lenses L1 and L2 are improved 
significantly, which is of benefit for the lens design. With the above parameters, the angle of the 
field of view of the FL is given by 

2 26.9 4.6arctan arctan 1.2
2 2 196.9


             

y
f

,  (31) 

where y is the length of the CCD diagonal and f 
’ the focal length of the FL. The resulting 

parameters of the long-distance FL calculated as explained above are listed in Table 1. 

Table 1. Parameters calculated for our long-distance Fourier lens. 
Parameter Fourier lens system Lens L1 Lens L2 

Focal length, mm 196.6 100 –40 
Aperture, mm 25 25 5 

Relative aperture 1/8 1/4 1/8 
Some positional 
parameters, mm 

t1 = 80.34, t2 = 38.64, L = 118.98 (total length) 

Field of view angle ω = 1.2º 

Since we use a laser in our JTC, we have no need in considering chromatic aberration 
corrections. On the other hand, the spherical aberration and the sine condition are still essential 
because the optical system of the FL has a little field-of-view angle and a large aperture. Then a 
doublet can be used for the lens L1, thus benefiting the aberration correlation. Similarly, a laser 
beam-expansion system can also use the identical long-distance lens. The final structure of the 
optical system of our compact JTC is shown in Fig. 7. The total length of the JTC is given by 

LJTC = 118.98 + 118.98 + 40 = 277.96  278 mm. 

Even though some extensions can be compromised, the total length is no longer than 300 mm, 
which reduces efficiently the total size of the JTC. 

 
Fig. 7. General schematic diagram of our miniaturized JTC. 
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5. Image shift measurements based on the JTC 
Our experimental platform has been built using the components described above with the purpose 
of checking the effectiveness of the system and the measurement accuracy. In our experiment, an 
initial sub-image with the size of 256×256 is extracted from the remote sensing image, after being 
interpolated and down-sampled. The target image with the sub-pixel shifts and the reference image 
are then obtained, with the same sizes 128×128. Then the both images are input into the SLM. 
According to the relationships derived in Section 3, the distance between the images is 200 pixels 
(see Fig. 8a). The output associated with the correlation of these two images is shown in Fig. 8b. 
The auto-correlations and the two cross-correlations represent large disperse spots separated some 
distance from each other. This is similar to the pattern shown in the central slashed rectangle in 
Fig. 4. It is evident that the measurement error is larger than 1 pixel if the image shift is directly 
measured from the output. 

For improving the measurement accuracy one has to weaken the auto-correlation power, 
which makes the cross-correlations shrink into little bright points. There are many processing 
methods for this aim, which allow finding the appropriate centroids easily [8–11]. After having 
done a lot of experiments, we have found that the measurement accuracy becomes the highest 
when the power spectra of the target and reference images are first subtracted from the JPS. Then 
the subtracted power spectrum is binarized with a zero threshold, as shown in Fig. 8c. A lot of 
strips are contained in the power spectrum, which means that the JPS represents an interference 
pattern formed by numerous identical points coming from the target and reference images. Their 
intensities are modulated by the diffraction of the target image (or the reference image). After 
being subtracted, the interference strips that contain the information on the image shifts are only 
remained in the JPS. The processed JPS is again Fourier transformed by the FL and the correlation 
output is caught by the CCD, as shown in Fig. 8d. Now we find that the cross-correlations shrink 
into two little spots with more distinct edges and higher powers, if compared with Fig. 8b. This 
allows for determining the centroids of the cross-correlations peaks easily. As a consequence, the 
image shifts can be measured with notable higher accuracy.  

 
(a) Input of the JTC 

 
(b) Output of the JTC with no processing 

 
(c) Subtracted and binarized JPS 

 
(d) Output of the JTC after processing 

Fig. 8. Illustrations of inputs and outputs of our JTC. 
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Basing on our experimental platform, we have studied the measurement performances of the 
JTC on the examples of 100 different sub-images, whose sizes are 256×256. After that, the initial 
and shifted images have been interpolated and merged with software to form the target image and 
the reference image with the same sizes 128×128. The image shift between them is less than 
1 pixel. We have input these sub-images into our JTC and the image shift has been measured. The 
results analyzed using standard mathematical statistics have demonstrated that the image shifts can 
indeed be measured very accurately and the mean measurement error for all of the images remains 
less than 0.1 pixel. 

6. Conclusion 
To improve the quality of images taken with high-resolution spatial camera, we have suggested 
using a specific JTC for measuring the shifts between the two adjacent images. Considering the 
miniaturization requirements, we have analyzed the relationships among the parameters of the 
components of our optical system, basing on the Fourier optics principles. After having completed 
these stages, we have designed a compact JTC and built a corresponding experiment platform. By 
employing certain processing methods associated with our JPS, we have been in a position to 
detect easily the locations of the cross-correlation points and so measure accurately the relevant 
image shifts. The results obtained have shown that the measurement errors do not exceed 0.1 pixel, 
whenever the shifts between the target and reference images are less than 1 pixel.  
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Анотація. Для поліпшення якості знімків просторових камер ми вимірюємо субпіксельні 
зсуви між двома сусідніми зображеннями, використовуючи корелятор спільного 
перетворення (КСП). Спочатку ми описуємо принципи вимірювання зсувів зображень на 
основі КСП. Далі з урахуванням дискретної піксельно-подібної будови ПЗС і просторового 
модулятора світла обговорено зв’язки між параметрами компонентів КСП, що 
випливають із теореми дискретизації та принципів фур’є-оптики. На цій підставі обрано 
необхідні прилади і розраховано лінзу Фур'є для побудови компактного КСП. Нарешті, 
створено необхідну експериментальну базу і оцінено ефективність вимірювань зсувів 
зображень. Результати засвідчили, що субпіксельні зсуви зображень можна виміряти з 
досить високою точністю. Похибки є меншими за 0,1 піксель за умови, що зсуви зображень 
перебувають у межах до 1 пікселя. 


