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Abstract. In this work we study the methods for reconstructing spectral reflectances 
of images. To reproduce the spectral reflectance more accurately and the colours 
more realistically, we obtain a so-called average transformation matrix, using a 
series of different modulated light sources to illuminate a standard whiteboard. For 
eliminating the influence of those light sources on RGB images, we first use a 
white-balance algorithm to standardize the scene information, thus obtaining a 
uniform RGB image with different sources. Then we map the RGB image onto the 
spectral reflectance basing on a compressive sensing algorithm and the principal 
component analysis and, finally, reconstruct the spectral reflectance of the testing 
sample. We compare the reconstruction accuracies of our compressive sensing 
algorithm based on white-balance calibration with the results derived using a 
pseudo-inverse method and a traditional compressive sensing algorithm. Our 
simulation results show that, under the same conditions of reconstruction, the 
residual errors and the colour difference resulting from our improved algorithm are 
less than those produced by the other two algorithms. In other words, the 
reconstruction algorithm suggested by us outperforms the other methods and can 
provide better performance of image colour reproduction. 
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1. Introduction 
At present colour reproduction relies mainly on colour space description methods RGB, XYZ or 
CIELAB, all of which involve some residual inaccuracies of colour reproduction. It is known that 
the most comprehensive and accurate description of the colour is given by spectral reflectance  
[1, 2]. Nonetheless, the reconstructed colour differences based on the traditional methods in this 
field (see, e.g., Refs. [3–5]) are not sufficiently small while the calculation times remain long 
enough. The authors of Ref. [6] have used a compressive sensing algorithm to reconstruct the 
spectral reflectance. It reduces the reconstruction errors and the colour difference, and shortens the 
calculation times if compared with the pseudo-inverse and Wiener algorithms. In Ref. [7], the 
spectral reflectance reconstruction based on the algorithm of adaptive compressive sensing has 
been suggested, which takes into account the representation and the relevance of sample selection 
and so improves clearly the reconstruction accuracy. However, both of the methods [6, 7] require 
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huge training samples to obtain a so-called ‘average transformation matrix’ for reconstructing 
spectral reflectance with specific light sources. As a result, the reconstruction precision is notably 
affected by a set of training samples and a light source chosen. 

In this work we propose a new method for obtaining the average transformation matrix. Our 
light source is modulated, and a standard whiteboard is illuminated one by one using the 
modulated source with a specific relative spectral power distribution. An RGB camera is used to 
collect the information on the spectral energy, which enables obtaining the camera response. The 
average transformation matrix is obtained using the advantage that the reflectivity of the standard 
whiteboard is one hundred percent. In order to avoid the influence of different light sources on the 
RGB image and obtain a consistent average transformation matrix, we process the image 
according to the white-balance algorithm. In this manner a uniform average transformation matrix 
can be obtained. The mapping function between the RGB image and the spectral reflectance is 
ascertained with the compressive sensing algorithm, using an iterative threshold based on the 
principal component analysis. In brief, our approach intends to adopt the compressive sensing 
algorithm [8–12] based on the white-balance correction to reconstruction if spectral reflectances of 
images. It improves both the spectral reflectance reconstruction efficiency and the precision. 

2. Spectral reflectance reconstruction based on pseudo-inverse algorithm 
When the spectral imaging system obtains a channel value of an image, the output image channel 
value is affected by the relative spectral energy distribution of a standard lighting  l  , the 

spectral reflectance  r   of that image, the sensitivity of a camera  s  , and the spectral 

transmittance of a colour filter  k  . The process may be described as follows: 

       
max

min

k ku s l r d




       ,   (1) 

where k  is the number of channel in a spectral imaging system and ku  the output image signal in 

the channel k . Eq. (1) can be expressed using a discrete matrix, 
T

ku M r ,     (2) 

where TM  represents the spectral response matrix. The parameter   1TQ M M M


  can be 

obtained by the least square method as min 2
2Qu r . Then the spectral reflectance can be 

obtained [6, 7]: 
1( )T

kr M M M u .    (3) 

3. Description of our algorithm  
3.1. Building average transformation matrix M with the standard whiteboard 
We define an average transformation matrix as a matrix that relates the parameters of the camera 
response ( D ) and the light source ( L ). First, a series of lighting source  1 2, ,... ML L L L  with a 

specific, known in advance relative spectral power distribution is constructed to illuminate a stan-
dard whiteboard. Then the matrix L R  is obtained by combining the spectral reflectance of the 
whiteboard with the light source. Eq. (2) may be represented using the following discrete matrix: 
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.   (4) 

Here D  is the camera response parameter, which involves the camera sensitivity  s   and the 

spectral transmittance of a filter  k  , and R  denotes the spectral reflectance of the standard 

whiteboard. Notice that the channel response u  of the RGB camera is a known quantity, which is 
obtained using the camera to receive the information on the spectral energy distribution. We 
remind at this point that the standard whiteboard transmittance is equal to 100%. When the 
modulated light source illuminates the whiteboard, its spectral reflectance amounts to unity, as can 
be seen from the formula 

1u D L D L     ,     (5) 

Then the camera response parameter D  can be obtained with the pseudo-inverse method as 
 PinD v L u  .     (6) 

Finally, we obtain the transformation matrix as M L D  , which is based on the parameter 
L  of the structured modulated light source and the camera response parameter D . 

Hence, the average transformation matrix M  can be obtained from the spectral reflectance 
even though the channel response value of the training sample remains unknown. Then the 
mapping of the channel response onto the spectral reflectance can be found according to the 
average transformation matrix thus obtained. The relevant procedures are based on the algorithm 
of compressive sensing and the principal component analysis. The performance of the matrix M  
obtained with this method should be certainly high because the standard whiteboard transmits one-
to-one the information on the spectral reflectance, thus containing indirectly the information on the 
image lighting and the camera parameters. On the other hand, the M  matrix obtained using the 
training samples is affected by the parameters of those samples. This cannot ensure that it contains 
the complete information on all the testing samples. 

3.2. Mapping of u  onto r  
According to the property of smoothness of the spectral reflectance, r  is combined linearly with 
the feature vector J . One can express the linear model as 

  1 2 1 2, , , , , , T
J Jr Ba b b b a a a      ,   (7) 

where r  implies the spectral reflectance vector of 1N   dimensions, B the basis function vector of 
N J  dimensions, and a  the 1J  -dimension coefficient of the basis function vector. According 
to the above analysis, we express Eq. (2) in the form 

T T
ku M r M Ba  ,     (8) 

where ku  represents a K-dimension vector. Since we have K N , Eq. (2) does not have a definite 

solution. The r  parameter may be expressed as r Ba , so that r  represents a J-dimension vector. 
Eq. (2) will have a definite solution whenever we have J K . The quantity  1 2 3, ,B b b b  can be 

obtained using the principal component analysis. Since the coefficient a can be found with the 
iterative threshold algorithm, the mapping from the RGB image u onto the spectral reflectance r  
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is given by the formula [6, 7] 
2

12
ˆ arg min T

ar B u M Ba a      
  

.   (9) 

In Eq. (9), r̂  represents the reconstructed spectral reflectance, u the channel response of the testing 
sample, and M is defined as M L D � . Notice that the parameter   is introduced to balance the 

proportions of the two parts of the objective function. Finally, f is used to represent the mapping 
function from u to r. 

3.3. Reconstruction stage 
Let us consider two different spectral reflectances  1r   and  2r   resulted from two different 

kinds of the light source,  1L   and  2L  . For a given ‘observer’ function  cC  , these two 

spectral reflectances share the same RGB values. This ‘metamerism problem’ is described as 

           1 1 2 2c cL r C d L r C d         .   (10) 

When the illumination information is unknown, it is difficult to determine whether the 
reflectance is  1r   or  2r  . This is why a single mapping of the illumination information onto 

the spectral reflectance cannot solve the problem. One straightforward solution is to build the 
mappings for each illumination. However, this requires a huge effort to calibrate each mapping. 
When the illumination is different, the RGB image seen by the human eye is different, so the 
mapping from the RGB image to the spectral reflectance also changes. To provide a uniform 
mapping, a white-balancing algorithm should be put forward. After obtaining the RGB image, this 
algorithm must be used to obtain the uniform white-balance image under different light source 
conditions. This is equivalent to standardizing different light sources. Then for a variety of lighting 
conditions, the obtained RGB image becomes the same through the white-balance procedure. We 
represent the step of adding white balancing as 

1 1 1diag , , (ˆ ( ) )k
r g b

k t
u u

t t


 
  
 

 .    (11) 

Here , ,r g bt t t t     is the white balancing vector associated with the white-balancing algorithm 

chosen. To perform the white-balancing step, we use the shades-of-grey method which is for 
simplicity based on the Minkowsky norm of the order of 5 [13, 14]. 

To reconstruct accurately the spectral reflectance of the testing sample image, the image must 
be first processed using the white balancing. Then the RGB value of the image obtained will 
always remain the same under the conditions of different light sources. The RGB image is usually 
obtained for the case of standard light source, as shown in Fig. 1. We define the mapping f as the 
relationship between the RGB image and the spectral reflectance r. Provided that the function f of 
mapping the RGB image onto the spectral reflectance and the white-balancing image û  are known, 
the reconstructed spectral reflectance  r̂ x  of the testing sample is given by 

    ˆ ˆr x f u x .      (12) 

The approach suggested by us will be referred to as a ‘compressive sensing algorithm based 
on the white-balance calibration’. 



 

Ukr. J. Phys. Opt. 2016, Volume 17, Issue 3 116 

 
Fig. 1. Mapping relationship between the RGB image and the spectral reflectance. 

4. Experimental results and discussion 
We first construct a series of modulated light sources with specific relative spectral power 
distributions to illuminate the standard whiteboard. The camera is used to receive the information 
on the spectral energy distribution. The absolute spectral reflectance ratio for the whiteboard is 
equal to unity, and the spectral selectivity is small, i.e. we have the same high reflection ratio for 
each wavelength. Because the transmission rate of the whiteboard is always equal to 100%, the 
average transformation matrix M can be described as M L D  . The traditional RGB camera is 
used to shoot experimental samples of multi-channel spectral images. Six-channel digital response 
of the testing samples is obtained by adding three different colour filters into the filter gear. 

The imaging process is illustrated in Fig. 2. To establish a single uniform mapping from the 
RGB image to the spectral reflectance, the RGB image first needs to be white-balance corrected. 
Hence, the white-balance algorithm regulates indirectly the lighting information in the image to 
obtain uniform RGB images with different light sources. To describe the influence of different 
algorithms on reconstruction of the spectral reflectance, a simulation experiment has been carried 
out using the MATLAB software. The image provided by Finland Eastern University (see 
Ref. [15]) was chosen as a testing sample to reconstruct the spectral reflectance based on our algo-
rithm. The resolution of the original image is 152 91  and the spectral reflectance range is 400–
700 nm, with intervals of 10 nm, so that the spectral reflectance is collected in 31N   dimensions. 

 
Fig. 2. Illustration of our spectral imaging system. 
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The standard colorimetric observer spectral tristimulus values CIE1931 are obtained from the 
spectral reflectances of multispectral images multiplied by the spectral energy distribution matrix 
of the standard illuminant D50 and by the standard colorimetric observer spectral matching 
function CIE1931: 

     

     

     

max

max

max

,

,

min

min

min

X X l r d

Y Y l r d

Z Z l r d













   

   

   













.    (13) 

Then through the known colour space conversion matrix, the CIE1931 standard colorimetric 
observer spectral tristimulus value is transformed into the RGB colour space value. Finally, the 
RGB image of the testing sample is obtained (see Fig. 3). 

  
Fig. 3. Multi-spectral images in different channels. 

We have used the root-mean-square error to evaluate the precision of spectral reconstruction. 
Following from the original and reconstructed spectral reflectances ir  and îr  of each pixel, the 

root-mean-square error can be calculated as 

1

1 ˆ( )
n

i i
i

RMSE r r
n 

  .    (14) 

The chromatic aberration abE  of the reconstructed spectral reflectance has been evaluated 

using the CIE1976 chromatic aberration formula. It is based upon the ‘coordinates’  1 1 1, ,L a b  and 

 2 2 2, ,L a b  of the original and reconstructed test samples: 
1

2 2 2 2
2 1 2 1 2 1( ) ( ) ( )abE L L a a b b         .  (15) 

Here the L component represents a so-called ‘lightness’, and the a and b components 
correspond to the changes in the chromatic values from green to red and from blue to yellow, 
respectively. Finally, we have used the spectral matching precision GFC when evaluating the 
quality degree of fitting corresponding to the spectral reflectance reconstruction: 
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2 2
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r r
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r r



 




 
.     (16) 

4.1. Spectral reflectance reconstruction based on our method 
Let us denote the spectral reflectance reconstruction process based on the traditional compressive 
sensing algorithm as CS. It includes the following steps: 

(1) The Munsell card is selected as a training sample. Using a camera for obtaining the 
channel response value of the training sample and a spectrophotometer for measuring the spectral 
reflectance, one can obtain the average transformation matrix M. 

(2) The basis function vector  1 2 3, ,B b b b  of the spectral reflectance of the training sample 

is obtained using the principal component analysis, and the first three principal components serve 
as the components of the basis function vector for the reconstructed spectral reflectance. 

(3) Based on the obtained channel response values ku  of the testing sample and the first 

three principal components of the training sample, the sparse coefficient â  is obtained with the 
iterative threshold algorithm. Then the spectral reflectance of the testing sample is reconstructed 
with Eq. (8). 

Now we summarize the alternative spectral reflectance reconstruction process based on our 
algorithm of compressive sensing algorithm with the white-balance correction. The latter method 
will be referred to as WCS. It includes the following: 

(1) The standard whiteboard is placed in front of the camera, and the structured modulated 
light source (with L known in advance) illuminates the whiteboard. Since the standard whiteboard 
has the unit reflectance, first the average transformation matrix M L D   is obtained. 

(2) The compressive sensing algorithm is used to find the mapping function between the 
RGB image and the spectral reflectance. First, the basis function vector is obtained as the spectral 
reflectance of the reconstructed testing samples, using the method of principal component analysis. 
Then the sparse coefficient â  is obtained, using the compressive sensing algorithm. Finally, the 
mapping relationship between the RGB image and the spectral reflectance is found as given by 
Eq. (9). 

(3) The RGB images are different due to different light sources. To establish uniform 
mapping, one has to process the RGB image using the white balance. Then the uniform RGB 
images are obtained with different sources. Finally, the spectral reflectance of the testing sample is 
reconstructed with Eq. (12). 

Taking one pixel in the image of woman face as an example, we compare reconstructions of 
the spectral reflectance using the traditional algorithm CS and our algorithm WCS. In particular, 
the reconstruction error, the colour difference and the spectral matching precision peculiar for the 
two algorithms are compared, as shown in Table 1. From Table 1 one can draw the following 
conclusions: 

(i) The WCS algorithm can accurately reconstruct the spectral reflectance of the image. The 
reconstruction error and the colour difference based on this algorithm are smaller than those of the 
other two algorithms. The GFC parameter associated with the WCS algorithm is larger than that of 
the CS algorithm; 
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(ii) When compared with the CS algorithm which does not take into account the effect of 
light source, our WCS algorithm standardizes indirectly the lighting of images, so that the 
reconstruction performance becomes improved. 

 

Table 1. Accuracies of spectral reflectance reconstructions using different algorithms: Pinv, 
CS and WCS are abbreviations of the pseudo-inverse algorithm, the traditional compressive 
sensing algorithm and the compressive sensing algorithm based on the white-balance 
correction, respectively. 

Method RMSE ΔE GFC 
Pinv 0.013 0.75 0.9542 
CS 0.0079 0.0380 0.9677 

WCS 0.000686 0.0226 0.9705 
 

In Fig. 4 we compare the original spectral reflectance with the corresponding fitting results 
derived with the methods CS and WCS. A number of conclusions arise as a consequence: 

(i) The error of the WCS algorithm is less than that of the CS one; 
(ii) If compared with the spectral curve produced with the CS algorithm, the curve 

reconstructed using the WCS algorithm is closer to the original curve, and the relevant fitting 
quality is higher. The spectral reflectance reconstruction accuracy based on the white-balance 
correction is greater than that of the method with no correction. 
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Fig. 4. Comparison of results obtained with different spectral reflectance reconstruction 
algorithms (see the text). 

4.2. The influence of wavelength interval 
To study the influence of the wavelength interval, we have chosen the Munsell card as a basis for 
the training sample set. The spectral reflectance range is 400–700 nm, and the sampling intervals 
are taken to be 5, 10 and 20 nm. The spectral reflectance of the training sample is processed at dif-
ferent sampling intervals, using the principal component analysis. As a result, the first three prin-
cipal components and the singular value of the training sample set have been obtained. The contri-
bution rate of the first three principal components has been calculated, and the spectral reflectance 
of the surface of the untested sample has been reconstructed using our WCS algorithm. The 
relationship between the reconstruction erros and the sampling interval is demonstrated in Table 2. 

The following conclusions of our analysis are worthwhile: 
(i) The cumulative contribution rates of the first three principal components are 98.55, 98.54 

and 98.53% respectively for the wavelength intervals 5, 10 and 20 nm, i.e. the rate decreases with 
increasing interval; 
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(ii) The reconstruction errors for the first three principal components are equal to 0.000388, 
0.000686 and 0.003256 for the sampling intervals 5, 10 and 20 nm, i.e. increasing interval 
increases this error; 

(iii) The reconstructed colour difference increases with increasing wavelength interval; 
(iv) The fitting quality coefficient decreases with increasing wavelength interval. 

 

Table 2. Relationships between the reconstruction accuracy of our WCS method and the 
wavelength sampling interval. 

Interval, nm RMSE ΔE GFC 

5 0.000388 0.0199 0.9929 

10 0.000686 0.0226 0.9705 

20 0.003256 0.0268 0.9537 

4.3. The influence of number of iterations  
For investigating the influence of iteration number on our results, we have selected six-channel 
response values of the samples. The Munsell colour card has been chosen as a training sample, and 
the first six principal components of the training samples have been taken to fix the basis function 
vector. The spectral reflectance for the woman face image has been reconstructed using our WCS 
algorithm. The relationship between the reconstruction error and the number of iterations is shown 
in Fig. 5. It is obvious that the reconstruction error decreases with increasing number of iterations. 
This error can be minimized when the number of iterations becomes close to the sparsity of the 
spectral reflectance. 
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Fig. 5. Dependence of root-mean-square error of our WCS method on the number of iterations (see the text). 

4.4. The effect of number of principal components 
To study the effect of the number of principal components, we have been selected RC24, SG140 
and Munsell colour training sample sets. In general, all of those three kinds of the training samples 
are consistent in their colour space distributions. However, the similarities in the colour spatial 
distributions of the X-Rite 24-colour card and the 140-colour testing sample SG140 are somewhat 
smaller, while the Munsell colour space distribution is located in the centre of the radial 
distribution. It is also more similar to the multispectral testing image. Therefore, the Munsell 
colour has some advantages in this respect. 

Through the principal component analysis, the first six principal components of the 
multispectral reflectance data of the training samples have been derived, which constitute the basis 
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function vector to reconstruct the spectral reflectance. The average transformation matrix M and 
the basis function vector B have been obtained using respectively the formula M L D   and the 
principal component analysis. The spectral reflectance of the untested sample has been 
reconstructed with our WCS algorithm (see Eq. (11)). The relationship between the error value and 
the number of principal components is shown in Fig. 6. The following conclusions are 
straightforward: 

(i) The spectral reconstruction errors are bigger when the process is based on the six principal 
component of the RC24 colour cards and the 140-colour training samples. The error becomes the 
lowest in case of the principal components of the Munsell colour card; 

(ii) With the same training sample, the error decreases with increasing number of the 
principal components. When this number increases to three, the spectral reflectance reconstruction 
error based on our WCS method changes little (see Fig. 6). The reason is that the contribution rate 
of the first three principal components is more than 95%. 
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Fig. 6. Dependence of reconstruction error of our WCS method on the number of principal 
components (see the text). 

5. Conclusions 
In this study we have suggested a mapping function of the well-known compressive sensing 
algorithm, which is based on the principal component analysis. The average transformation matrix 
has been obtained by structuring a series of modulated light sources to illuminate the standard 
whiteboard. This has enabled us to avoid the influence of training samples on the average 
transformation matrix, improve the reconstruction precision and reduce the amount of necessary 
computations. As compared to the traditional CS algorithm with no white balance involved, we 
employ the white-balance processing to regulate indirectly the lighting components in the image 
and to provide consistency of the RGB images obtained with different illumination sources. 
Therefore a single mapping of the RGB image onto the spectral reflectance is only needed. As a 
result, the spectral reflectance can be reconstructed with notably lower root-mean-square error and 
higher fitting quality. Moreover, our WCS algorithm of spectral reconstruction ensures a better 
spectrum-matching effect, smaller errors and improved spectral reconstruction performance, if 
compared with the traditional CS method. 

To obtain the vector of the basic functions of the spectral reflectance reconstruction using the 
principal component analysis, we have used the Munsell colour card as a training sample. Then the 
dimensionality of high-dimensional spectral reflectance is reduced. We have reconstructed a 
number of testing samples based on our improved WCS algorithm.  

By comparing the root-mean-square error and the colour difference, one can conclude that 
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the reconstruction accuracy based on our WCS algorithm is better than that of the CS one. We 
have also studied some factors which can influence the results of our method. In particular, we 
have demonstrated how the reconstruction precision of the WCS algorithm is affected by the 
number of principal component, the wavelength sampling interval and the number of iterations. It 
is shown that the spectral reconstruction error and the colour difference increase with increasing 
wavelength interval, so that the reconstruction precision falls down. At the same time, the spectral 
reconstruction error decreases with increasing number of iterations. 

Acknowledgments 
This study is supported by the National Basic Research Program of China (973 Program) under the 
Grant No.2015CB352004, the National Natural Science Foundation of China (Grant No.61405115, 
61378035), the Natural Science Foundation of Shanghai (Grant No. 14ZR1428400), Innovation 
Project of Shanghai Municipal Education Commission (Grant No. 14YZ099). 

References 
1. Day E A, Berns R S and Taplin L A, 2004. A psychophysical experiment evaluating the color 

accuracy of several multispectral image capture techniques. Imaging Sci. Technol. 48: 93–104. 
2. Zhang X D, Wang Q, Yang G F, Wu L, 2013. Key technologies review of the spectral color 

management system. China Printing and Packing Study. 5: 10–17. 
3. Jiang B W, 2012. Method of multi-spectral images reduce-dimensions based on PCA. Inform. 

Technol. 8: 98–101. 
4. Takase K, Tsumura N, Nakaguchi T and Miyake Y, 2005. Fast estimation algorithm for 

calculation of reflectance map based on Wiener estimation technique. Opt. Rev. 12: 20–24. 
5. Maloney L T and Wandell B A, 1986. Color constancy: a method for recovering surface 

spectral reflectance. J. Opt. Soc. Amer. A. 3: 29–33. 
6. Zhang L H, Liang D, Pan Z L and Ma X H, 2015. Study on the key technology of 

reconstruction spectral reflectance based on the algorithm of compressive sensing. Opt. Quant. 
Electron. 47: 1679–1692. 

7. Zhang Leihong, Liang Dong, Li Bei, Kang Yi, Pan Zilan, Zhang Dawei and Ma Xiuhua, 2016. 
The study of key technology on spectral reflectance reconstruction based on the algorithm of 
adaptive compressive sensing. Laser Phys. 26: 045201. 

8. Bioucas-Dias J M and Figueiredo M A T, 2007. A new TwIST: two-step iterative shrinkage/ 
thresholding for image restoration. IEEE Trans. Image Process. 16: 2992–3004. 

9. Romberg J, 2008. Imaging via compressive sampling. IEEE Signal Process. Mag. 25: 14–20. 
10. Donoho D L, 2006. Compressed sensing. IEEE Trans. Inform. Theory. 52: 1289–1306. 
11. Amirshahi S H and Amirhahi S A, 2010. Adaptive non-negative bases for reconstruction of 

spectral data from colorimetric information. Opt. Rev. 17: 562–569. 
12. Candès E J, Romberg J and Tao T, 2006. Robust uncertainty principles: Exact signal 

reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory. 
52: 489–509. 

13. Nguyen R M H, Prasad D K and Brown M S, 2014. Training based spectral reconstruction 
from a single RGB image. Lecture Notes in Comp. Sci. 8695: 186–201. 

14. Finlayson H S and Trezzi E, 2004. Shades of gray and colour constancy. In: Proceedings of 
IS&T/SID Twelfth Color Imaging Conference. p. 37–41. 

15. Spectral Image Database. University of Eastern Finland Color Group [EB/OL]. 
http://www.uef.fi/spectral/spectral image database. 



 

Ukr. J. Phys. Opt. 2016, Volume 17, Issue 3 123 

 
Zhang Leihong, Liang Dong, Li Bei, Kang Yi, Zhang Dawei and Ma Xiuhua 2016. Spectral 
reflectance recovery from a white-balanced RGB image based on the algorithm of compressive 
sensing. Ukr.J.Phys.Opt. 17: 112 – 123 
 
Анотація. У роботі вивчаються методи відновлення спектрального відбивання зображень. 
Для точнішого відтворення спектральної відбивної здатності і більш реалістичного 
відтворення кольорів ми одержуємо т. зв. середню матрицю перетворення, 
використовуючи низку різних модульованих джерел для освітлення стандартної “білої 
дошки”. Для усунення впливу цих джерел світла на RGB-зображення ми спочатку 
використовуємо алгоритм балансу білого, щоб стандартизувати інформацію про сцену, 
отримуючи у цей спосіб однорідне RGB-зображення для випадку різних джерел. Далі ми 
формуємо відповідність (мапу) між RGB-зображенням і спектральним відбиванням, 
виходячи з алгоритму стиснутого зондування та аналізу головних компонент і, нарешті, 
реконструюємо спектральне відбивання тестового зразка. Ми порівнюємо точність 
реконструкції зображення для нашого алгоритму стиснутого зондування, заснованого на 
калібруванні балансу білого, із результатами, отриманими з використанням 
псевдоінверсного методу і традиційного варіанту алгоритму стисненого зондування. 
Результати моделювання показують, що за тих же умов реконструкції залишкові похибки 
і відмінності в кольорах для нашого поліпшеного алгоритму менші, ніж відповідні величини 
для інших двох алгоритмів. Тому запропонований нами алгоритм відновлення переважає ці 
методи і може забезпечити вищу продуктивність відтворення кольорів зображень. 


