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Abstract. Basing on a positive confocal unstable resonator, the propagation 
characteristics of laser field are studied by means of fast Fourier transform. The 
output laser beam is focused on a copper target and generates a plasma plume 
expanding along the normal to the target surface. Considering the absorption of laser 
radiation in the copper target, we describe heating and melting of the material by a 
three-dimensional thermal conductivity model. The spatial and temporal evolutions 
of the plasma shock wave are investigated as functions of the time passed after the 
pulse laser irradiation. The results show that the maximum pressure of the plasma 
shock wave is 8.18 GPa at the time t = 0.8 μs after the pulse laser is cut off and then 
it decreases gradually with increasing time. The maximum pressure decays down to 
4.73 GPa at t = 4.8 s.  
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1. Introduction 
In recent decades, there has been a long-standing interest of researchers in developing high-power 
lasers, including chemical carbon dioxide, oxygen-iodine, diode-pumped solid-state and 
semiconductor diode lasers, for a variety of applications, including material processing and long-
range sensing. Key development goals in the field are high brightness and high efficiency. The 
output intensity distribution from the high-power lasers is generally annular [1]. 

High-intensity nanosecond laser pulses have been used for both fundamental and applied 
studies for more than two decades, although many of the basic phenomena occurring during laser 
irradiation of solids have still remained not fully understood. The formation and expansion of a 
plume produced by laser irradiation of a surface is a starting point for the studies of plume 
dynamics, ion-assisted film growth and microanalysis. A simple numerical model to describe the 
main physical processes involved in the laser heating and vaporization of metal targets has been 
presented by Lunney and Jordan [2]. The model has been used to calculate the plasma absorption, 
the average ion energy and the ablation depth per pulse for an iron target irradiated with a 26 ns 
excimer laser pulse at 248 nm. Toftmann et al. [3] have explored experimentally the shape of the 
plume in the nanosecond laser ablation of metals for different laser beam-spot geometries. 
Amoruso and Wang [4] have studied the dynamics and composition of the laser ablation plume 
produced during ultrashort laser irradiation of metals in vacuum. Gacek and Wang [5] have 
observed the secondary shock wave in the interaction laser–material, and explored the effects of 
shock-driven process of laser-ablated argon plume in a background gas environment via molecular 
dynamics simulations. Goh et al. [6] have investigated the expansion dynamics of copper plasma 
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generated via ultrashort laser ablation of pure copper targets by examining optically the plasma 
plume. Finally, Wang et al. [7] have studied experimentally the plasma plume produced during 
ultrafast laser ablation of a copper target in high vacuum. Surprisingly, up to now there is no 
complete theoretical treatment of a time-limited expansion process, even for a neutral expanding 
plume [3, 8]. 

In the previous theoretical works for the laser ablation, a mathematical model has generally 
been artificially predefined to represent specific laser beams, such as Gaussian or flat-topped ones. 
Basing on the initial built-in oscillation in a laser resonator, a positive confocal unstable resonator 
with the working wavelength 10.6 μm, in the present work we obtain the intensity and phase 
distributions for the output laser filed to study the interaction laser–target. Taking into account gas-
dynamic continuity equation, Euler equations, N-S equations and energy equations, we establish 
the two-dimension gas-dynamic calculation model. The spatio-temporal evolutions of the plasma 
shock wave (PSW) on the copper target are investigated by means of a finite element method, and 
both the PSW evolution and the flow field distribution are obtained. Therefore the main objectives 
of the present work are (i) to investigate the absorption of laser radiation on the copper target 
basing on the initial built-in oscillation in the laser resonator and (ii) to examine the behaviour of 
the copper plasma plume by means of the finite element methods. 

2. Laser field distribution  
Schematic diagram of a positive confocal unstable resonator and light propagation is shown in 
Fig. 1. Here Mb and Mf represent respectively the back and front (output) mirrors of the resonator, 
rb and rf their curvature radii, and ab and af their transverse radii. Of the remaining notation, L 
means the distance between the mirrors, θ the offset angle of the gravity centre of the far field, and 
Pb, Pf and Po the reference planes of the output window. Definitions and numerical values of the 
parameters involved in our further analysis are listed in Table 1 (see also Ref. [9]). 
 

 
Fig. 1. Schematic diagram of copper ablated by the output of positive confocal unstable resonator. 

The optical wave travelling in a given direction inside the laser resonator may be expressed 
as ( , , ) exp( )E x y z ikz i t , where ),,( zyxE  is the amplitude of the laser field, 2k  the wave 

vector,   the wavelength, and   the angular frequency. The z coordinate increases from inside 
the front mirror Mf back to the back mirror Mb and then again towards the front mirror. For an 
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empty resonator, the wave equation for the optical field in rectangular coordinates is given by 
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The distribution ( , ,0)E x y  of the laser field in the plane Po may be obtained using the fast 

Fourier transform [9]. 
 

Table 1. Definitions and numerical values of the resonator parameters used in our calculations. 
Parameter Magnitude Unit 

Transverse radius of the back mirror ab 2.40 cm 

Transverse radius of the front mirror af 1.20 cm 

Curvature radius of the back mirror rb 400 cm 

Curvature radius of the front mirror rf 200 cm 

Resonator of length L 100 cm 

Geometrical magnification M 2 – 

Laser wavelength λ 10.6 μm 

 

3. Model of the shock wave  

3.1. Laser heating 
Fig. 2 illustrates a copper target ablated by the pulsed laser and a temperature distribution inside 
the metal target. Here the laser beam is incident along the positive z direction, and the target 
thickness and radius are equal to d and b, respectively.  
 

 

Fig. 2. A scheme of copper target irradiated by a pulsed laser. 

We assume that the laser beam consists of plane waves over the light-propagation region in 
the substrate, while the radius of the laser beam is constant and does not changes along the 
propagation depth, resulting in a constant cross-section area with respect to z. The light energy is 
absorbed in a finite depth of the medium bound by the laser light-propagation region, thus causing 
thermal effects in the target and a temperature increase. 

For microsecond pulsed lasers, the thickness of laser transmission is far less than the thermal 
diffusion thickness. Accordingly, the energy flow from the laser can be considered to form a heat 
source on the target surface. Let  be the average thermal conductivity, C the latent heat,  the 
density and Is(r, t) the net energy flow on the target surface. Then the target-surface temperature 
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increase Ts can be expressed as [2] 
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where 0T  denotes the initial temperature on the target surface and FL  the thermal capacity. 

When the temperature of the target is very high, the thermal conductivity k and the specific 
heat capacity C of the material can no longer be taken as constants and become temperature-
dependent. We use a 3D transient thermal finite-element model to solve the equation for transient 
heat conduction [10]: 
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In Eqs. (3) and (4) k implies the thermal conductivity, ( , )T r t  the temperature, r  the 

position vector, t the time, ρ the density, h the ideal-gas enthalpy, Cp the specific heat, and q  the 

heat generation rate per unit volume. The latter may be described as [2] 
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where IL is the incident laser intensity,  the incident angle, IP the reflected intensity, and RL and RP 
the reflectivities of the target and the plasma, respectively. 

The last item 
 
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 in Eq. (5) represents the heat evaporation, in which LV is the 

vaporization heat per atom and ( )d Nl dt  the change rate of atomic and ionic numbers in plasma 

per unit area (Nl). The physical parameters of copper required for calculations are gathered in 
Table 2. 

Table 2. Thermal parameters of copper as reported in Ref. [11]. 

Temperature, K Specific heat, J/KgK Thermal conductivity, W/mK 
200 356.1 413 
250 374.1 406 
300 385 401 
350 392.6 396 
400 398.6 393 
500 407.7 386 
600 416.7 379 
800 – 366 
1000 – 352 
1200 – 339 

 
We estimate the temperature of solid and liquid phases with the finite element method. The 

recession velocity of the ablating surface can be evaluated using a Hertz-Knudsen equation and 
assuming that the explosive effects are negligible. We consider the plasma plume to be in local 
thermodynamic equilibrium, so that the energy balance enables one to find the plume temperature, 
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velocity and pressure distributions under the assumption that the gas expansion from the surface 
target produces a sonic front. Finally, the plume energy balance is influenced by the energy lost 
originated from irradiation of the plume and by the amount of laser beam energy reflected from the 
target surface. 

3.2. Shock wave expansion 
Since the plasma plume can be considered as ideal gas, the single-flow gas-dynamic equation can 
be solved for the PSW. It is tempting to assume that the plasma generated by the pulsed laser is 
ideal, in viscid and compressible fluid. Then the gas-dynamic continuity equation, the Euler 
equation, the N-S equation and the energy equation can be used to describe the pulsed laser-
induced PSW. Notice that the expansion of the PSW just resembles an ideal point explosion [12, 
13]. For the convenience of calculations and further analysis, we choose the origin at the centre of 
the ablated surface and taken the normal to be the PSW propagation direction.  

The set of equations consists of conservation equations for the mass, energy and momentum, 
and the diffusion equation: 
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Here   is the viscosity tensor, 
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E= h – p/ + 0.5v2, E denotes the energy, h the enthalpy,  the mass density, p the pressure, 
Yi the mass fraction of copper vapour in the gas mixture, cp the specific heat at constant pressure, 
v  the velocity vector, k the thermal conductivity, T the temperature,  the absorption coefficient, 

IL the laser intensity, R the radiation loss function, g  the gravity, F


 the external force,  the 

dynamic viscosity, Di,m the diffusion coefficient, and I


 the unit tensor. Note that all the material 
functions depend on the temperature and mass fraction only. 

When the pulsed laser irradiates the copper debris, the plasma is generated on the ablated 
target. The practical expanding process includes the side propagation of the PSW and the evolution 
of the flow field along the axial direction. Due to symmetrical distributions of the pressure and the 
temperature, the flow field can be calculated as a two-dimensional problem. We have solved the 
above equation set in the axial symmetry, using a commercially available program Fluent 6.1 [14]. 

4. Results and discussion  

4.1. Shock wave velocity 
Issuing from Eqs. (6)–(10), one can obtain the evolution diagrams for the PSW. The contours of 
the velocity as functions of time are shown in Fig. 3a–e. The PSW reaches its maximum velocity, 
116 km/s, at the time t = 0.8 μs after the pulse laser is cut off. Afterwards it decreases gradually 
with increasing time. The maximum velocity decays to 87.9 km/s at the time t = 4.8 s. At 
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t = 0.8 μs the region of the maximum velocity is close by the target surface and then it moves 
gradually away from the metal surface. At the time t = 4.8 s, the distance between this region and 
the target surface is about 8 cm.  

The interface of the PSW and the undisturbed ambient gas consists of the flowing and 
undisturbed gases (see Fig. 3a–e). The distance along the normal direction between the outmost 
layer and the spot centre increases with increasing time. 

 
Fig. 3. Calculated contours of velocity for the PSW. (Color online) 

4.2. Pressure distributions  
The contours of the pressure as functions of time are shown in Fig. 4a–e. One can readily see that 
the maximum pressure of the PSW is 8.18 GPa. It is achieved at the time t = 0.8μs after the pulse 
laser is cut off, and then gradually decreases. The maximum pressure decays down to 4.73 GPa at 
t = 4.8 s. 

At the same time moment t = 0.8 μs, the spatial region of the maximum pressure is located 
near the target surface. Then it moves gradually away from the metal surface. The distance 
between the maximum pressure region and the target surface becomes as large as about 9 cm at 
t = 4.8 s. 
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The interface of the PSW and the ambient gas consists of the dynamic pressure and gauge 
pressure, which is seen from Fig. 3a–e. The distance from the outmost layer to the spot centre 
along the normal direction increases with increasing time. 

 
Fig. 4. Calculated contours of pressure for the PSW. (Color online) 

4.3. Axial distributions 
In order to understand the propagation characteristics of the PSW in a more detail, we have 
obtained the relevant spatial distributions along the axial direction shown in Fig. 5a, b. In 
particular, Fig. 5a illustrates the distribution of velocity in the axial direction, which also coincides 
with the normal direction. One can see a peak in the corresponding curve, with the velocity at this 
point being equal to 46.8 10 m/sv    and the x coordinate being 0.01 m.  

If we suppose that the explosion point is on the target surface at the time 0t  , then the 
distance 0.01 mx   implies that it takes 0.8 μs  for the centre of the velocity field to move from 

the laser spot in the normal direction. Passing from Fig. 5a to Fig. 5f, one observes that the summit 
of the curve becomes lower and lower, and the corresponding x coordinate moves rightwards. This 
means that the maximum velocity gets lower with time elapse, while the distance to the target 
surface becomes still farther and farther. 

Fig. 5b shows the axial distributions of the pressure induced by the ablated copper debris, 
with the appropriate parameter values taken the same as in Fig. 4. Here the peak is a core region in 
the contours of the pressure field. It is reduced with increasing x coordinate so that the peak 
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becomes farther from the surface of metal target. Notice that the minimum pressure in Fig. 4 is 
zero, i.e. the overall region corresponds to undisturbed ambient gas whenever the dynamic 
pressure vanishes. If the dynamic pressure increases above zero, the alternative region of 
compressed vapour gas is being formed. Finally, one can analyze the distance reached by the 
compressed vapour gas at different times, when combining the data of Fig. 4 and Fig. 5. 

 

 
(a)  
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(b) 

Fig. 5. Calculated axial distributions of velocity (a) and pressure (b). 

5. Conclusions  
As evident from the large number of experimental and theoretical studies carried out on the laser 
ablation, this subject has attracted significant interest of researchers in the recent years. In the pre-
sent study we have studied the propagation characteristics of the laser field using the fast Fourier 
transform and the approach of positive confocal unstable resonator. In particular, we have cal-
culated the spatial and temporal evolutions of the PSW for the case when the far-field output laser 
beam is focused on a copper target. The spatial velocity, pressure and temperature distributions for 
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the PSW have been obtained as functions of time passed after the pulse laser radiation is turned off. 
It is well known that the laser ablation and propulsion can also be affected by the laser power, 

the irradiation time, the characteristics of metal targets and some other factors. Therefore in 
practice the characteristics of the PSWs are determined by many complex factors, which need 
their further elucidation. Finally, we hope that our results can be helpful for deeper 
understanding of the influence of laser parameters on the laser ablation and propulsion of 
space debris. 
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Анотація. За допомогою швидкого перетворення Фур'є в роботі вивчались характеристики 
лазерного випромінювання додатного конфокального нестійкого резонатора. Лазерне 
випромінювання фокусувалось на мідній мішені і генерувало плазмовий факел, який поширювався 
нормально до поверхні мішені. З урахуванням поглинання лазерного випромінювання мідною 
мішенню, ми описали нагрівання і плавлення матеріалу за допомогою тривимірної моделі 
теплопровідності. Досліджена просторова і часова еволюція плазмової ударної хвилі як функції 
часу, що минув після імпульсного лазерного опромінення. Виявлено, що максимальний тиск 
плазми ударної хвилі становив 8,18 ГПа в момент t = 0,8 мкс після вимкнення лазерного імпульсу 
і зменшувався з часом, спадаючи до 4,73 ГПа при t  = 4,8 мкс. 


