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Abstract. We describe the effect of acoustical activity existing in TeO2 crystals un-
der the condition of equal propagation velocities of the quasi-transverse and quasi-
longitudinal waves. Relations for the phase velocities and the ellipticities of 
eigenwaves are obtained. It is found that the eigenwaves excited by the quasi-
longitudinal wave and one of the quasi-transverse waves become circularly pola-
rized. The difference of the phase velocities for these waves caused by the acoustical 
activity leads to a circular phase difference and also to rotation of the displacement 
vector with respect to the displacement vector that excites the acoustic wave. 
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1. Introduction 
Acoustical activity [1] represents an analogue of a well-known optical activity effect. Both of the 
effects (acoustic or optical) appear in non-centrosymmetric  media and manifest themselves in 
rotation of polarization plane of the transverse acoustic or optical waves propagating through these 
media. Of course, the polarization plane rotation is only the simplest manifestation of the effects. 
When considering the acoustical or optical activities, we deal in fact with the effects of spatial 
dispersion so that the polarization plane rotation in either case depends upon the wave vector of 
the waves. 

The acoustical activity has been predicted in the works [2–4] and experimentally detected in 
quartz crystals (see Ref. [1]). It has been found that the polarization plane rotation due to the 
acoustical activity can reach significant values (3–5 rad/cm or (17.2–28.7)×103deg/m [1]) 
whenever the transverse acoustic wave with the frequency belonging to the region 1.05–1.4 GHz 
propagates along a three-fold symmetry axis of quartz. In other words, the magnitudes of the 
acoustical and optical activity effects are comparable. Indeed, the module of the optical rotation 
for the same quartz crystals is equal to 17.32×103deg/m at the light wavelength 656.3 nm [5].  

As evidenced by the Brillouin scattering results [6], a linearly polarized phonon excited in 
quartz, with its wave vector parallel to the three-fold axis, splits into two circularly polarized 
acoustic eigenwaves that propagate with different velocities. The difference is about 1% at 
30 GHz. Notice that the three-fold axis in the crystalline quartz is parallel to ‘acoustic axis’ (i.e., 
the direction along which the two linearly polarized transverse waves with the orthogonal po-
larizations have the same phase velocity). In other words, under propagation of the transverse 
acoustic waves along the acoustic axes, the acoustical activity effect manifests itself in the same 
manner as the optical activity. The result is splitting of the input linearly polarized wave into the 
two circularly polarized ones, which propagate with different velocities. Having reached the 
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outgoing face of a crystal sample, these waves are superimposed and the initial linearly polarized 
wave is restored, although with the displacement vector rotated by some angle with respect to the 
input (exciting) wave.  

The acoustical activity has been studied in a number of materials, e.g. Bi12GeO20 [7], 
tellurium [8] and some liquid crystals [9]. On the example of LiNbO3, it has been found that the 
acoustical activity affects the efficiency of acoustooptic diffraction [10]. As shown earlier (see, 
e.g., Ref. [2]), the acoustical activity manifests itself in pure rotation of the acoustic polarization 
plane when the transverse acoustic wave propagates along the three-fold or higher-symmetry axes 
which, at the same time, represent the acoustic axis. This holds true for the non-centrosymmetric 
crystals involving no symmetry mirror planes or inversion axes. Then the point symmetry groups 
suitable for detecting the acoustical activity in its simplest form are as follows: 3, 4, 6, 32, 422, 
622, 23, and 432.  

As a matter of fact, the acoustical activity is not forbidden in the crystals belonging to some 
other acentric symmetry groups – or under propagation of the acoustic waves in any other 
directions. The maximal number of nonzero independent components available in the fourth-rank 
axial tensor with the internal symmetry 3εV[V] , which describes the acoustical activity, is equal to 
30 for all the acentric point symmetry groups [11]. The structure of the tensor has also been 
obtained in Refs. [12, 13]. However, the authors of those works have dealt with the tensor of the 
internal symmetry 2εV[V] V , which describes the ‘total’ acoustical activity effect, including a so-
called ‘weak activity’. The tensor includes 45 nonzero independent components. Notice that the 
weak acoustical activity is analogous to the weak optical activity effect, being described by the 
antisymmetric axial second-rank tensor. It has not yet been detected experimentally [14]. Although 
the acoustic materials of all types support propagation of the longitudinal acoustical waves and so 
detecting of the weak acoustical activity seems to be easier than for the case of the weak optical 
activity, in the present work we will still focus on the acoustical activity tensor in its simplest 
form, i.e. the tensor containing 30 independent components. This approach can help clearly 
separate the acoustical activity effects of different natures.  

Note that even simple comparison of the ranks of the acoustical and optical activity tensors 
suggests that the former effect has to be more complicated in its manifestations than its optical 
analogue. The simplest experimental manifestation, i.e. the rotation of polarization plane, has been 
considered in the works [11, 13] and the phenomenological relations describing the rotation angle 
have been obtained. In addition, the study [11] has demonstrated that the transverse and elliptically 
polarized longitudinal waves can interact in case of the acoustical activity. Nonetheless, no 
detailed description of the ellipticity of interacting eigenwaves has been reported up to now. 
Tellurium dioxide crystals represent one of suitable candidates for such a description, since the 
phase velocities of one of the quasi-transverse waves and the quasi-longitudinal wave can become 
equal for certain propagation directions (see Ref. [5]). The main goal of this work is to derive the 
ellipticity of acoustic eigenwaves in the presence of acoustical activity in TeO2 crystals and to 
analyze the coupling of quasi-longitudinal and quasi-transverse acoustic waves in this material. 

2. Results of analysis 
Let us introduce a phenomenological description of the acoustical activity effect. After accounting 
for the first-order spatial dispersion, one can write the Hooke’s law as (see, e.g., Ref. [6]) 

2
kl k k

ij ijkl kl ijklm ijkl ijklm
m l l m

e u u
C e B C B

X X X X


  
   

   
,  (1) 
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where ij  and kle  are respectively the stress and the strain caused by the acoustic wave, lX  and 

mX  the coordinates, ijklC  is the elastic stiffness tensor, ku  the displacement vector, and ijklmB  the 

polar fifth-rank tensor describing the acoustical gyration. Then the elastodynamical equation 
taking the spatial dispersion into account may be written as 

22 3

2
jk k

ijkl ijklm
i l i l m

uu u
C B

X X X X X t

 

 
     

,     (2) 

where   is the material density and t  the time coordinate. For the simplest case of plane waves 

with the unit polarization vector kp , the amplitude A, the wave vector m, the velocity v and the 

wavelength   (
2 ( - )i mr vt

k ku Ap e

 ), Eq.(2) reads as  

22
ijkl i l ijklm i l m k jC m m iB m m m p v p

    
,   (3) 

where 2a
ik ijkl i l ijklm i l mM C m m iB m m m
 


 is the Christoffel tensor that accounts for the acoustical 

activity. The elastic stiffness tensor is Hermitian and includes antisymmetric imaginary part, 
2

ijklm i l miB m m m


. Hence, the relation ijklm klijmB B   holds true and the tensor reveals the 

internal symmetry {[V2]2}V. However, the tensor is symmetric with respect to permutations of the 
indices i, l and m that correspond to the wave vectors. Then the internal symmetry of ijklmB  

reduces to {V2}[V3]. As a consequence, it can be rewritten in terms of the axial fourth-rank 
acoustical gyration tensor gsilm with the internal symmetry εV[V3]: 

silm sjk ijklmg B



,    2

ijklm jks silmB g



,    (4) 

where sjk  is the unitary, fully antisymmetric axial Levi–Civita tensor. The axial vector of the 

acoustical activity is determined by the acoustical gyration tensor as 

s silm i l mg m m m  .      (5) 

Finally, one can reduce Eq. (3) to the following form: 

  2
jk jk ss k jM i p v p   ,     (6) 

where jkM  is the Christoffel tensor that does not take the acoustical activity into account.  

Let us consider Eq. (6) in a more detail. In general, it can be presented as a system of 
equations (see, e.g., Ref. [14]): 

2
1 11 1 3 2 2 3

2
2 3 1 22 2 1 3

2
2 2 1 1 2 33 3

v p M p i p i p

v p i p M p i p

v p i p i p M p

  

  

  

   
    


  

,    (7) 

where 0lv  (l = 1, 2, 3) are the acoustic wave velocities which obey the relations 2
01 1 11 1v p M p  , 

2
02 2 22 2v p M p   and 2

03 3 33 3v p M p   under the condition of absence of the acoustical activity 
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effect, and v  implies the acoustic wave velocities that account for the latter effect. As a result, we 
present the system of Eqs. (7) as 

2 2
01 1 3 2 2 3

2 2
3 1 02 2 1 3

2 2
2 1 1 2 03 3

( ) 0

( ) 0

( ) 0

v v p i p i p

i p v v p i p

i p i p v v p

  

  

  

    
    


   

.    (8) 

In fact, the solutions of this system determine the velocities of the acoustic eigenwaves and 
their ellipticities. 

As already mentioned, the simplest case of the acoustical activity has already been described 
in the literature (see, e.g., Ref. [11]). It happens when the transverse acoustic wave propagates 
along the three-fold (or higher-order) symmetry axis which, at the same time, represents the 
acoustic axis. For example, when the transverse acoustic wave with the wave vector component m3 
is excited in the acentric crystals belonging to the middle symmetry systems, Eq. (5) may be 
written as 3

3 3333 3g m  . According to Eq. (6), the change in the polarization of this wave should 

obey the relations 1 3 2[ ]p p   or 2 3 1[ ]p p  . Thus, the system of Eqs. (8) may be 

represented as 
2 2
01 1 3 2

2 2
3 1 02 2
2 2
03 3

( ) 0

( ) 0

( ) 0

v v p i p

i p v v p

v v p

 

 



   
   


 

.    (9) 

If the wave vector component m3 is parallel to the higher-symmetry axis, the eigenwave with 
the polarization 3p  (i.e., the longitudinal wave) suffers no change in its propagation velocity due 

to the acoustical activity, i.e. 3 03v v . In this case the system of Eqs. (9) is simplified to 
2 2
01 1 3 2

2 2
3 1 02 2

( ) 0

( ) 0

v v p i p

i p v v p

 

 

   

   

.    (10) 

The two solutions that correspond to the velocities of the transverse waves are 

01 02 0

2 2 2 2 2 2 2 2 2 2
1,2 01 02 01 02 01 02 3

2 3
0

1 ( ) ( ) 4 4 /
2

.

v v vv v v v v v v

v

 




 
        

 
  (11) 

The ellipticities   of these waves are defined by the relation 1 2/i p p  , being equal to 

1 . This describes the two circularly polarized waves with the opposite rotation directions of the 
displacement vector. The waves that pass through the sample with the thickness d acquire the 

phase difference 3
3 0/c d v    . Hence, the angle of rotation of the polarization plane is equal to 

3
3
02 2

d
v

 





  .  

The situation is more complex in the crystals that belong, e.g., to the symmetry groups 222, 
mm2, 2 and m ( 3 32 , mX X ). Here the velocities 01 02v v  and Eq. (11) results in 
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where 
2
3

2 2 2 2
01 02

4
1

( )v v


 
 . The ellipticity of these waves is given by the relation 1

2

pi
p

   (or 

1

2

pi
p

  ), i.e. 

2 2
01 02 3

2 2
3 01 02

( ) /
.

/ ( )

v v

v v

 


 

  


     (13) 

In fact, the polarizations ellipses of the waves are characterized by high eccentricity.  
The analogous behaviours of the optical and acoustic waves in the presence of the gyration 

effect suggest that there is no reason for their different analytical description. As a result, when the 
acoustic wave is excited with the displacement vector parallel to the eigenvectors of the Christoffel 
tensor, the polarization ellipse of the emergent wave should oscillate with the angular amplitude 
  defined by the known relation 

2

2 22

2 2

2 sin
1tan 2

1 2 cos
1 1

e

e




 
 


 

            

,   (14) 

where e  denotes the elliptical phase difference. The ellipticity ( / tanb a  ) of the emergent 

wave is given by 
2

2 2
1tan 2 (1 cos )

(1 )
e


 




   


.    (15) 

Notice that the elliptical phase difference satisfies the relation  
2 2 2( ) ( ) ( )e l c     ,     (16) 

where 01 02 01 02( ) /l d v v v v    implies the phase difference between linearly polarized waves in 

the absence of acoustical activity. In fact, Eq. (16) represents a so-called superposition principle, 
which is well known from the crystal optics [15].  

However, similarities in the description of the gyrotropy in crystal acoustics and crystal 
optics are limited only to the two cases of coupling of the transverse waves due to the acoustical 
activity, which are described above. The third, longitudinal wave is not coupled with these 
transverse waves in the example analyzed above. Notice also that the system of Eqs. (8) can be 
solved analytically in general case, although the relevant solutions are cumbersome and cannot be 
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simplified for their further analysis. On the other hand, the coupling of the longitudinal and 
transverse waves in acoustically active media can be demonstrated in the best way for the crystals 
in which the velocity of one of the quasi-transverse waves is equal to the velocity of the quasi-
longitudinal wave. Though the velocities of the longitudinal waves are usually higher than those of 
the transverse waves, this unique situation is really observed in TeO2 [5]. When the acoustic waves 
propagate in the principal planes X1X3 or X2X3 under the angle   = 80 deg with respect to the X3 
axis, the velocity of the quasi-transverse acoustic wave polarized perpendicularly to these planes is 
equal to the velocity of the quasi-longitudinal wave (3014 m/s – see, e.g., Ref. [5]). The cross 
sections of the acoustic-wave velocity surfaces by the principal planes X1X3 and X2X3 for TeO2 are 
presented at Fig. 1. These have been constructed basing on the Christoffel equation that neglects 
the acoustical activity, using the elastic stiffness coefficients reported in Ref. [16] (C11 = 5.32, 
C12 = 4.86, C13 = 2.12, C33 = 10.85, C44 = 2.44 and C66 = 5.52×1010 N/m2). 
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To proceed, we have to transform the tensor silmg , which has been written in Ref. [14] in the 

crystallographic coordinate system X1X2X3, to the system rotated around the X2 axis by the angle 
  in such a manner that the axis 3'X  becomes parallel to the acoustic wave vector and to the 

direction where the velocities of the quasi-transverse and quasi-longitudinal waves are equal (see 
Fig. 1). Then the gyration tensor components in the coordinate system X1X2X3 given by 

3 3 3

1

2

3 3333

0
0

m m m

g





 should be rewritten in the 1 2 3' 'X X X  system as  

3 3 3

1 1333

2

2 3333

' ' '
' '
' 0
' '

m m m
g

g





,      (17) 

where 
3 3

1333 1111 3311 1133 3333

1111 3311 1133 3333

' ( ) cos sin ( )sin cos
0.1659 ( ) 0.0052( ),

g g g g g
g g g g

      

   
  (18) 

and 
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4 4 2 2
3333 1111 3333 3311 1133

1111 3333 3311 1133

' sin cos ( )sin cos
0.9406 0.0009 0.0292 ( ).

g g g g g
g g g g

     

   
 (19) 

Accordingly, the system of Eqs. (8) becomes as follows: 
2 2
01 1 3 2

2 2
3 1 0 2 1 3

2 2
1 2 0 3

( ) 0

( ) 0

( ) 0

v v p i p

i p v v p i p

i p v v p

 

  

 

   
    

   

,    (20) 

with 02 03 0 3014 m/sv v v   , v01 = 2030 m/s and 35990 kg/m   [16].  

For further numerical simulations we are to fix the parameters 1  and 3 . The relevant data 

for TeO2 is not available in the literature and so we accept 1  and 3  to be of the same order of 

magnitude as those typical for the quartz crystals [14] (107 kg/ms2 and 5×107 kg/ms2, respectively). 

We have 
2 2 3 3 2

0
6 108 27 27 4

cbd c b c b d d
      for the discriminant associated with the system of Eqs. 

(20), where 2 2
01 02b v v  , 

22
2 2 431
01 0 02 2 2c v v v


 

     and 
2 2 2 2

4 2 1 01 3 0
0 01 2

v v
d v v

 




  . Then there 

are three real solutions of Eqs. (20): 
 

2

2
1/3

3 2 2 3 3 2

1/3
3 2 2 3 3 2

9 3
3

2 27 6 6 108 27 27 4

,
2 27 6 6 108 27 27 4

QL

b c
bv

d b cb cbd c b c b d d

d b cb cbd c b c b d d


 

 
       
 
 

 
        
 
 

  (21) 

 
2

2
1 1/3

3 2 2 3 3 2

1/3
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        
 
 




 
       
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 
 
 
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(22) 
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2
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 
 
 
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(23) 

 

Eqs. (21)–(23) are rather cumbersome and cannot be easily simplified. The velocities of the 
acoustic waves calculated from these relations are as follows: 3014.30 m/sQLv  , 

1 2030.02 m/sQTv   and 2 3013.80 m/sQTv  . Therefore the acoustical activity changes little the 

velocities of the acoustic waves.  
It would be instructive to verify if the same result can be obtained after ‘stepwise’ 

transformation of the Christoffel tensor, from which the system of Eqs. (20) follows, into the eigen 
coordinate system. This transformation is realized by (i) eliminating the component 23 1M i  and 

then (ii) eliminating the 12 3M i  component. The final relations obtained for the acoustic wave 

velocities acquire the following form: 

 2 2 2 2 2 2 2 2 2 2 2
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2 2 2 2
2 1 0 01 1 31
0 2 2 2

0 01
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QLv v v v v v v

v vv
v v

      


   
 

        

  
 



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2 2 2 2
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2

( ) 4
,

2 2 ( )

QTv v v v v v v

v vv
v v

      


   
 

        

  
 




 (25) 

2 2 1
2 0QTv v 


  .     (26) 

The acoustic wave velocities calculated using Eqs. (24)–(26) are essentially the same as those 
derived with Eqs. (21)–(23): 3014.30 m/sQLv  , 1 2030.02 m/sQTv   and 2 3013.80 m/sQTv  . 

Hence, one can readily use Eqs. (24)–(26) while describing the changes occurring in the acoustic 
wave velocities due to the acoustical activity.  

Now we consider the changes that occur in the polarization of the acoustic eigenwaves due to 
the acoustical activity for the geometry of wave propagation in TeO2 considered above. It follows 
from the system of Eqs. (20) that the ellipticity of the eigenwaves is given by 
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  (27) 

In other words, if the acoustic wave QT1 is excited, the polarization ellipse of the wave 

propagating in the sample lies in the '
1 2X X  plane and the corresponding ellipticity reads as 

'
1 2

2 2
1 3

1 2 2
3 0 01

4
2 ( )

X X
QT v v

 


 





.      (28) 

This ellipticity is quite small and depends on the difference of velocities of the two quasi-

transverse acoustic waves. Moreover, the polarization ellipse is elongated along the '
1X  axis (see 

Fig. 2a). Notice that the wave propagates with no splitting. When the other wave QT2 is excited, 

circularly polarized waves can appear, with the polarization circle belonging to the '
3 2X X  plane 

(see Fig. 2b). The corresponding ellipticity is determined as 
'
3 2

2 1X X
QT   .      (29) 

Notice also that the polarization circle belonging to the '
3 2X X  plane is left-handed.  

Now we consider the effect of the acoustical activity on the polarization of the quasi-
longitudinal wave QL. When the quasi-longitudinal wave is excited, the eigenwave is almost 
circularly polarized, with the ellipticity 

'
3 2 1X X

QL  .      (30) 

Then the polarization circle belongs to the '
3 2X X  plane and the circular polarization has the op-

posite sign when compared to the polarization occurring in the case of the QT2 wave (see Fig. 2c). 
 

             
                    (a)             (b)     (c) 

Fig. 2. Schematic view of polarization ellipses for the acoustic waves QT1 (a), QT2 (b) and QL (c) that 
propagate in TeO2 crystals. 
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When the acoustic wave with nonzero projection of the displacement vector on the '
3X  and 

2X  axes is excited in the sample, it splits into two circularly polarized waves. These waves 

propagate with close enough velocities (the difference 2 0.5 m/sQL QTv v v     is very small) 

and acquire the circular phase difference 2/c QL QTd v v v    after reaching the output face of 

the sample. At the frequency 10 GHz and the sample thickness as small as 10–2 m, this phase 

difference is equal to 5.5 rad, while the angle of rotation of the displacement vector in the '
3 2X X  

plane with respect to the displacement vector of the incoming wave is two times smaller (2.25 rad 
or 128.98 deg). Therefore, if one excites in the sample the acoustic wave of which displacement 
vector has two nonzero components 

2Xu  and '
3Xu , the ratio of these components for the outgoing 

wave would change (see Fig. 3). This can be implemented experimentally with a material in which 
the quasi-transverse (or quasi-longitudinal) wave is characterized by high enough deviation angle 
from the purely transverse (or longitudinal) polarization. As a result, using the effect of acoustical 
activity and choosing appropriately the thickness of TeO2 sample, one can transform quasi-
longitudinal (quasi-transverse) acoustic waves into purely longitudinal (purely transverse) waves, 
or vice versa. 

 

 

Fig. 3. Schematic representation of rotation of the 
displacement vector due to the acoustical activity 
effect. 

3. Conclusions 
In the present work we have described the effect of acoustical activity in TeO2 crystals, which 
occurs in case when the propagation velocities of the quasi-transverse and quasi-longitudinal 
acoustic waves become equal. The relations for the phase velocities and the ellipticities of the 
eigenwaves have been obtained. We have found that, due to the acoustical activity, the quasi-trans-
verse and quasi-longitudinal waves are coupled with each other. When propagating in a crystalline 
medium, they produce circularly polarized eigenwaves. It is shown that the phase velocity diffe-
rence for these waves, which is caused by the acoustical activity, leads to the appearance of circu-
lar phase difference and so to rotation of the displacement vector with respect to the input acoustic 
wave. We have also demonstrated that the principle of superposition of the linear and circular 
birefringences, which is well-known in the crystal optics, remains valid for the crystal acoustics. 
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Анотація. Описано явище акустичної активності в кристалах TeO2 за умови однакових 
швидкостей поширення квазі-поперечної і квазі-поздовжньої хвиль. Отримано 
співвідношення для швидкостей і еліптичностей власних хвиль. Установлено, що власні 
хвилі, які виникають внаслідок збудження квазі-поздовжньої і однієї з квазі-поперечних 
хвиль, є циркулярно поляризованими. Різниця швидкостей цих хвиль, спричинена 
акустичною активністю, приводить до появи циркулярної різниці фаз і повороту вектора 
зміщення по відношенню до вектора зміщення, що збуджує акустичну хвилю. 
 


