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Abstract. We describe the effect of acoustical activity existing in TeO, crystals un-
der the condition of equal propagation velocities of the quasi-transverse and quasi-
longitudinal waves. Relations for the phase velocities and the -ellipticities of
eigenwaves are obtained. It is found that the eigenwaves excited by the quasi-
longitudinal wave and one of the quasi-transverse waves become circularly pola-
rized. The difference of the phase velocities for these waves caused by the acoustical
activity leads to a circular phase difference and also to rotation of the displacement
vector with respect to the displacement vector that excites the acoustic wave.
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1. Introduction

Acoustical activity [1] represents an analogue of a well-known optical activity effect. Both of the
effects (acoustic or optical) appear in non-centrosymmetric media and manifest themselves in
rotation of polarization plane of the transverse acoustic or optical waves propagating through these
media. Of course, the polarization plane rotation is only the simplest manifestation of the effects.
When considering the acoustical or optical activities, we deal in fact with the effects of spatial
dispersion so that the polarization plane rotation in either case depends upon the wave vector of
the waves.

The acoustical activity has been predicted in the works [2—4] and experimentally detected in
quartz crystals (see Ref. [1]). It has been found that the polarization plane rotation due to the
acoustical activity can reach significant values (3—5rad/cm or (17.2-28.7)x10°deg/m [1])
whenever the transverse acoustic wave with the frequency belonging to the region 1.05-1.4 GHz
propagates along a three-fold symmetry axis of quartz. In other words, the magnitudes of the
acoustical and optical activity effects are comparable. Indeed, the module of the optical rotation
for the same quartz crystals is equal to 17.32x10°deg/m at the light wavelength 656.3 nm [5].

As evidenced by the Brillouin scattering results [6], a linearly polarized phonon excited in
quartz, with its wave vector parallel to the three-fold axis, splits into two circularly polarized
acoustic eigenwaves that propagate with different velocities. The difference is about 1% at
30 GHz. Notice that the three-fold axis in the crystalline quartz is parallel to ‘acoustic axis’ (i.e.,
the direction along which the two linearly polarized transverse waves with the orthogonal po-
larizations have the same phase velocity). In other words, under propagation of the transverse
acoustic waves along the acoustic axes, the acoustical activity effect manifests itself in the same
manner as the optical activity. The result is splitting of the input linearly polarized wave into the
two circularly polarized ones, which propagate with different velocities. Having reached the
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outgoing face of a crystal sample, these waves are superimposed and the initial linearly polarized
wave is restored, although with the displacement vector rotated by some angle with respect to the
input (exciting) wave.

The acoustical activity has been studied in a number of materials, e.g. Bi;;GeOyy [7],
tellurium [8] and some liquid crystals [9]. On the example of LiNbOs;, it has been found that the
acoustical activity affects the efficiency of acoustooptic diffraction [10]. As shown earlier (see,
e.g., Ref. [2]), the acoustical activity manifests itself in pure rotation of the acoustic polarization
plane when the transverse acoustic wave propagates along the three-fold or higher-symmetry axes
which, at the same time, represent the acoustic axis. This holds true for the non-centrosymmetric
crystals involving no symmetry mirror planes or inversion axes. Then the point symmetry groups
suitable for detecting the acoustical activity in its simplest form are as follows: 3, 4, 6, 32, 422,
622,23, and 432.

As a matter of fact, the acoustical activity is not forbidden in the crystals belonging to some
other acentric symmetry groups — or under propagation of the acoustic waves in any other
directions. The maximal number of nonzero independent components available in the fourth-rank

axial tensor with the internal symmetry eV[V]>, which describes the acoustical activity, is equal to

30 for all the acentric point symmetry groups [11]. The structure of the tensor has also been
obtained in Refs. [12, 13]. However, the authors of those works have dealt with the tensor of the

internal symmetry eV[V]*V, which describes the ‘total’ acoustical activity effect, including a so-

called ‘weak activity’. The tensor includes 45 nonzero independent components. Notice that the
weak acoustical activity is analogous to the weak optical activity effect, being described by the
antisymmetric axial second-rank tensor. It has not yet been detected experimentally [14]. Although
the acoustic materials of all types support propagation of the longitudinal acoustical waves and so
detecting of the weak acoustical activity seems to be easier than for the case of the weak optical
activity, in the present work we will still focus on the acoustical activity tensor in its simplest
form, i.e. the tensor containing 30 independent components. This approach can help clearly
separate the acoustical activity effects of different natures.

Note that even simple comparison of the ranks of the acoustical and optical activity tensors
suggests that the former effect has to be more complicated in its manifestations than its optical
analogue. The simplest experimental manifestation, i.e. the rotation of polarization plane, has been
considered in the works [11, 13] and the phenomenological relations describing the rotation angle
have been obtained. In addition, the study [11] has demonstrated that the transverse and elliptically
polarized longitudinal waves can interact in case of the acoustical activity. Nonetheless, no
detailed description of the ellipticity of interacting eigenwaves has been reported up to now.
Tellurium dioxide crystals represent one of suitable candidates for such a description, since the
phase velocities of one of the quasi-transverse waves and the quasi-longitudinal wave can become
equal for certain propagation directions (see Ref. [5]). The main goal of this work is to derive the
ellipticity of acoustic eigenwaves in the presence of acoustical activity in TeO, crystals and to
analyze the coupling of quasi-longitudinal and quasi-transverse acoustic waves in this material.

2. Results of analysis

Let us introduce a phenomenological description of the acoustical activity effect. After accounting
for the first-order spatial dispersion, one can write the Hooke’s law as (see, e.g., Ref. [6])
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where o; and ¢, are respectively the stress and the strain caused by the acoustic wave, X; and

X, the coordinates, Cy, is the elastic stiffness tensor, u, the displacement vector, and By, the

polar fifth-rank tensor describing the acoustical gyration. Then the elastodynamical equation
taking the spatial dispersion into account may be written as

62uk 63uk 82ui
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where p is the material density and ¢ the time coordinate. For the simplest case of plane waves

with the unit polarization vector p, , the amplitude 4, the wave vector m, the velocity v and the

2—”i(mr—vt)

wavelength A (u;, = Apge® ), Eq.(2) reads as
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ikim™M;mym,, 18 the Christoffel tensor that accounts for the acoustical
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activity. The elastic stiffness tensor is Hermitian and includes antisymmetric imaginary part,
27
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kim™M;mym,, . Hence, the relation By, =—Bj,;, holds true and the tensor reveals the

ij
internal symmetry {[V*]*}V. However, the tensor is symmetric with respect to permutations of the

indices i, / and m that correspond to the wave vectors. Then the internal symmetry of B,

reduces to {V*}[V?]. As a consequence, it can be rewritten in terms of the axial fourth-rank
acoustical gyration tensor g, with the internal symmetry eV[V°]:

2r

T
8silm = X&quykln1 > TBg'jklm = 5_/'ks Esilm (4)

where 6 is the unitary, fully antisymmetric axial Levi-Civita tensor. The axial vector of the
acoustical activity is determined by the acoustical gyration tensor as
D = oMM, - )
Finally, one can reduce Eq. (3) to the following form:
(M +i8 8, ) i = PV (6)
where M ;, is the Christoffel tensor that does not take the acoustical activity into account.

Let us consider Eq. (6) in a more detail. In general, it can be presented as a system of
equations (see, e.g., Ref. [14]):

2 . .
pv-py =My py +igypy —ig s
2 . .
pV-py = =iy py + My py +iy ps (7
2 : .
PV Py =iy py — i Py + M35
where vy; (/ =1, 2, 3) are the acoustic wave velocities which obey the relations pvél =M p,

pvgz Py =My, p, and pv§3 P3 = M33p; under the condition of absence of the acoustical activity
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effect, and v implies the acoustic wave velocities that account for the latter effect. As a result, we
present the system of Egs. (7) as
Py =V py +igspy —igyp3 =0
~igs py + p(vip —v*)py +idh py =0. ®)
iy py —idpy + POy —v )Py =0

In fact, the solutions of this system determine the velocities of the acoustic eigenwaves and
their ellipticities.

As already mentioned, the simplest case of the acoustical activity has already been described
in the literature (see, e.g., Ref. [11]). It happens when the transverse acoustic wave propagates
along the three-fold (or higher-order) symmetry axis which, at the same time, represents the
acoustic axis. For example, when the transverse acoustic wave with the wave vector component 13
is excited in the acentric crystals belonging to the middle symmetry systems, Eq. (5) may be
written as ¢, = g,,,,;m; . According to Eq. (6), the change in the polarization of this wave should
obey the relations p; ~[¢;xp,] or p, ~[¢3xp/]. Thus, the system of Egs.(8) may be

represented as
PO =V py +igspy =0
=iy py + p(v5, =v*)py =0. ©)
p(vi3 —v*)p3 =0

If the wave vector component m; is parallel to the higher-symmetry axis, the eigenwave with
the polarization p; (i.e., the longitudinal wave) suffers no change in its propagation velocity due

to the acoustical activity, i.e. v3 = V3. In this case the system of Egs. (9) is simplified to

2 2 .

{P(Vm —vI)p +igspy =0 (10)

. 2 2 )

—igsp1 + p(Vp =v )Py =0

The two solutions that correspond to the velocities of the transverse waves are
2_122+\/2 24202 a2 2
Vig = > (Vo1 +vo2) T4/ (Vo1 +vo2) Vorvoz 443 /P ||, =v, =,
4 )]
= vg +—=.

The ellipticities x of these waves are defined by the relation —ix = p; / p,, being equal to

*1. This describes the two circularly polarized waves with the opposite rotation directions of the
displacement vector. The waves that pass through the sample with the thickness d acquire the

phase difference A, = ¢y0d / pvg . Hence, the angle of rotation of the polarization plane is equal to

_A_ho

@
2 2pv;

The situation is more complex in the crystals that belong, e.g., to the symmetry groups 222,
mm2, 2 and m (2 || X5, m L X3 ). Here the velocities v, # vy, and Eq. (11) results in
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where 2 < 1. The ellipticity of these waves is given by the relation —ix = LN (or
P~ (Vo1 —v2) P2
i =21 ), i.e.
P>

K:{poﬁl—vé)/% 03

5/ PV —V2)

In fact, the polarizations ellipses of the waves are characterized by high eccentricity.

The analogous behaviours of the optical and acoustic waves in the presence of the gyration
effect suggest that there is no reason for their different analytical description. As a result, when the
acoustic wave is excited with the displacement vector parallel to the eigenvectors of the Christoffel
tensor, the polarization ellipse of the emergent wave should oscillate with the angular amplitude
x defined by the known relation

2K
1+x

2 b
1-x? 2K 2
7|t 5 | cosA,
1+ 1+

where A, denotes the elliptical phase difference. The ellipticity (b/a =tany ) of the emergent

5 SinA,

tan2y =— 14)

wave is given by

)
tany:—2K1—K22(1—cosAe). (15)
(1-x7)
Notice that the elliptical phase difference satisfies the relation
(A.)" = (A + (A", (16)

where A; = wd(vy; —vgy) / vo1vo, implies the phase difference between linearly polarized waves in

the absence of acoustical activity. In fact, Eq. (16) represents a so-called superposition principle,
which is well known from the crystal optics [15].

However, similarities in the description of the gyrotropy in crystal acoustics and crystal
optics are limited only to the two cases of coupling of the transverse waves due to the acoustical
activity, which are described above. The third, longitudinal wave is not coupled with these
transverse waves in the example analyzed above. Notice also that the system of Egs. (8) can be
solved analytically in general case, although the relevant solutions are cumbersome and cannot be
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simplified for their further analysis. On the other hand, the coupling of the longitudinal and
transverse waves in acoustically active media can be demonstrated in the best way for the crystals
in which the velocity of one of the quasi-transverse waves is equal to the velocity of the quasi-
longitudinal wave. Though the velocities of the longitudinal waves are usually higher than those of
the transverse waves, this unique situation is really observed in TeO, [5]. When the acoustic waves
propagate in the principal planes X1.X; or X,X; under the angle ® = 80 deg with respect to the X3
axis, the velocity of the quasi-transverse acoustic wave polarized perpendicularly to these planes is
equal to the velocity of the quasi-longitudinal wave (3014 m/s — see, e.g., Ref. [S]). The cross
sections of the acoustic-wave velocity surfaces by the principal planes X1.X; and X,.X; for TeO, are
presented at Fig. 1. These have been constructed basing on the Christoffel equation that neglects
the acoustical activity, using the elastic stiffness coefficients reported in Ref. [16] (C;;=5.32,
C1,=4.86, Ci3=2.12, Cy3=10.85, Cyy=2.44 and Cgs= 5.52x10'"" N/m?).

v, mis 90 X, 4 QT2, pliX, (X,)
4000 o QT1, plX, (X,)
p QL
150/ 4
2000 /
X's' m‘s
0180 =0 X, (X))
Fig. 1. Cross sections of acoustic-
2000 \ L - /‘ wave velocity surfaces by the principal
210\ \ ¢ planes X;X; and X,X; for TeO; crystals:
G QL corresponds to quasi-longitudinal
wave, and QT1 and QT2 to quasi-
4000 transverse waves.

To proceed, we have to transform the tensor g which has been written in Ref. [14] in the

silm >
crystallographic coordinate system X1.X;X;, to the system rotated around the X, axis by the angle
© in such a manner that the axis X'; becomes parallel to the acoustic wave vector and to the
direction where the velocities of the quasi-transverse and quasi-longitudinal waves are equal (see

Fig. 1). Then the gyration tensor components in the coordinate system X, X,X; given by

(17)

where

\ .3 - 3
g'1333 =(&1111 — &3311) €08 Osin” O +(gy133 — 3333)sin O cos” O (18)

=0.1659 (21111 — &3311) +0-0052( gy 133 — g3333)>
and
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4 4 .2 2
€'3333 = &1111 810" O+ 23333008 O +(g331) + gp133)8in” Ocos” O

=0.9406 81111 +0.0009 £3333 +0.0292 (g3311 + 81133 )
Accordingly, the system of Egs. (8) becomes as follows:

(19)

p(vg1 —v?)p +igspy =0
~igs py + p(v§ —v*)py +iyp3 =0, (20)
~iy py + p(vy —v*)p3 =0

with vy, =vy3 =vy =3014 m/s, vo; =2030 m/s and p = 5990 kg/m® [16].
For further numerical simulations we are to fix the parameters ¢ and ¢; . The relevant data
for TeO, is not available in the literature and so we accept ¢ and ¢; to be of the same order of

magnitude as those typical for the quartz crystals [14] (10" kg/ms” and 5x10” kg/ms, respectively).

2.2 3 43 2
We have @—i—c—+ﬂ+d— <0 for the discriminant associated with the system of Egs.
6 108 27 27 4

2 2 22, 22
+
(20), where bzvgl +2V§, C:¢l—2+%—2"§1"§—"3 and d:VgV§1_¢l V01p2¢3vo
P

are three real solutions of Egs. (20):

. Then there

(e2y)

1/3
d b cb \/cbd A S bd dP
2l —+—+—+ _————t—+
6 108 27 27 4

] - (22)
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b ¢
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Egs. (21)—(23) are rather cumbersome and cannot be easily simplified. The velocities of the
acoustic waves calculated from these relations are as follows: vy, =3014.30 m/s,

vor1 =2030.02m/s and vy, =3013.80 m/s . Therefore the acoustical activity changes little the

velocities of the acoustic waves.

It would be instructive to verify if the same result can be obtained after ‘stepwise’
transformation of the Christoffel tensor, from which the system of Egs. (20) follows, into the eigen
coordinate system. This transformation is realized by (i) eliminating the component M,; =i¢ and

then (ii) eliminating the M,, =i¢; component. The final relations obtained for the acoustic wave

velocities acquire the following form:

1
VzQL =Z(P(V§ +V§1)+¢1 +\/P2(V§ —"(%1)2 +2¢1P(V§ —V§1)+¢12 +4¢32)

(24)
2 s P0G Vo) 4 g
2p 20 (v§ =)
1
Vo = g(pwé 330+ P2 07 337 + 28008 i)+ 47 + 407 |
(25)
2 B HPOG —v) 4 gy
20 20054 Vi)
vg”=%—%. (26)

The acoustic wave velocities calculated using Egs. (24)—(26) are essentially the same as those
derived with Eqs. (21)~(23): vy, =3014.30 m/s, vy =2030.02m/s and vyr, =3013.80 m/s.

Hence, one can readily use Egs. (24)—(26) while describing the changes occurring in the acoustic
wave velocities due to the acoustical activity.

Now we consider the changes that occur in the polarization of the acoustic eigenwaves due to
the acoustical activity for the geometry of wave propagation in TeO, considered above. It follows
from the system of Egs. (20) that the ellipticity of the eigenwaves is given by
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In other words, if the acoustic wave QT1 is excited, the polarization ellipse of the wave
propagating in the sample lies in the X 1'X » plane and the corresponding ellipticity reads as
KX ¢ +4¢3

A" (28)
O 2 p (0 —v31)

This ellipticity is quite small and depends on the difference of velocities of the two quasi-
transverse acoustic waves. Moreover, the polarization ellipse is elongated along the X, 1 axis (see
Fig. 2a). Notice that the wave propagates with no splitting. When the other wave QT2 is excited,
circularly polarized waves can appear, with the polarization circle belonging to the X ;X , plane
(see Fig. 2b). The corresponding ellipticity is determined as

X.;Xz — 1

Kpiy' == (29)

Notice also that the polarization circle belonging to the X gX » plane is left-handed.

Now we consider the effect of the acoustical activity on the polarization of the quasi-
longitudinal wave QL. When the quasi-longitudinal wave is excited, the eigenwave is almost
circularly polarized, with the ellipticity

XX
Ko 1. (30)

Then the polarization circle belongs to the X '3X > plane and the circular polarization has the op-

posite sign when compared to the polarization occurring in the case of the QT2 wave (see Fig. 2c).

X X X

X,
(@) (b) (c)

Fig. 2. Schematic view of polarization ellipses for the acoustic waves QT1 (a), QT2 (b) and QL (c) that
propagate in TeO, crystals.
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When the acoustic wave with nonzero projection of the displacement vector on the X 3 and
X, axes is excited in the sample, it splits into two circularly polarized waves. These waves

propagate with close enough velocities (the difference Av=v,; —vyr, =0.5m/s is very small)
and acquire the circular phase difference A, = @dAv/vy vor, after reaching the output face of
the sample. At the frequency 10 GHz and the sample thickness as small as 10>m, this phase

difference is equal to 5.5 rad, while the angle of rotation of the displacement vector in the X éX 5

plane with respect to the displacement vector of the incoming wave is two times smaller (2.25 rad
or 128.98 deg). Therefore, if one excites in the sample the acoustic wave of which displacement
vector has two nonzero components uy and u -, the ratio of these components for the outgoing

wave would change (see Fig. 3). This can be implemented experimentally with a material in which
the quasi-transverse (or quasi-longitudinal) wave is characterized by high enough deviation angle
from the purely transverse (or longitudinal) polarization. As a result, using the effect of acoustical
activity and choosing appropriately the thickness of TeO, sample, one can transform quasi-
longitudinal (quasi-transverse) acoustic waves into purely longitudinal (purely transverse) waves,
or vice versa.

X
7 Saaaey
X,
4
Y
P Fig. 3. Schematic representation of rotation of the
P displacement vector due to the acoustical activity
7 effect.

3. Conclusions

In the present work we have described the effect of acoustical activity in TeO, crystals, which
occurs in case when the propagation velocities of the quasi-transverse and quasi-longitudinal
acoustic waves become equal. The relations for the phase velocities and the ellipticities of the
eigenwaves have been obtained. We have found that, due to the acoustical activity, the quasi-trans-
verse and quasi-longitudinal waves are coupled with each other. When propagating in a crystalline
medium, they produce circularly polarized eigenwaves. It is shown that the phase velocity diffe-
rence for these waves, which is caused by the acoustical activity, leads to the appearance of circu-
lar phase difference and so to rotation of the displacement vector with respect to the input acoustic
wave. We have also demonstrated that the principle of superposition of the linear and circular
birefringences, which is well-known in the crystal optics, remains valid for the crystal acoustics.
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Anomayin. Onucano ssuwje axycmuunoi akmuenocmi ¢ kpucmanax TeO; 3a ymo6u 0OHAKOBUX
weuoKocmell  NOWUPEHH — K8A3I-NONEPeyHol | KBa3i-no30062CHbol  Xxéunvb.  Ompumano
CNiBBIOHOWEHHs OJIs WBUOKOCMEN | elINMUYHOCmell GIACHUX X8Ulb. YCMAHOBIEHO, WO GLACHI
X6ui, SIKI BUHUKAIOMb BHACTIOOK 30VOJCEHHs KBA3i-N03008JCHbOI I OOHIEl 3 KBA3I-NONepeyHux
X6UMb, € YUPKYIAPHO NONApU308anumu. Pisnuys weuokocmel yux Xeuab, CHpUYUHEHd
AKyCMUYHOK AKMUBHICIMIO, NPUBOOUMb 00 NOSA8U YUPKYIAPHOL pisHuyi gaz i nosopomy gekmopa
3MiUeHHs N0 BIOHOUEHHIO 00 8eKMOPA 3MIleHH, Wo 30Y0HCYE aKyCMU4HY XEUIO.
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