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Moving domain walls with Néel defects in optical oscillator 
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Abstract. We show both numerically and experimentally that the optical oscillator 
with combined parametric and laser gains supports formation of translationally 
or/and rotationally moving composite topological structures appearing in the form of 
optical domain walls, with the point defects similar to Néel topological defects 
available in ferromagnetics and liquid crystals. 
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1. Introduction 
Optical oscillators with laser or parametric gains can generate optical fields with nontrivial 
topological defects of phase such as screw or edge phase dislocations [1]. The screw dislocations, 
or vortices, which represent point topological defects of zero intensity around which the phase 

changes by 2, occur as particular solutions of the laser equations [2]. They have been observed 
experimentally in the multimode lasers and laser-like non-degenerate wave-mixing oscillators  
[3–5]. The formation of edge phase dislocations, or optical domain walls, has been predicted for 
the degenerate parametric oscillators [6, 7]. The walls that exist in the form of dark lines 
separating two spatial domains of equal light intensity and opposite phases have been 
experimentally demonstrated for a phase-bistable four-wave-mixing oscillator [8]. Two types of 
the optical domain walls have been found: (i) static Ising domain walls for which the phase jumps 

abruptly by  and (ii) moving Bloch domain walls with a smooth change in the phase. A transition 
between those walls can occur with detuning of the oscillator cavity [9] and the optical vortices 
can be converted into the optical domain wall structures via parametric rocking [10]. This has been 
implemented experimentally in the two-wave-mixing oscillator, using injection of an amplitude-
modulated laser beam into a cavity [11].  

In this work we investigate a spontaneous pattern formation in an active cavity with mixed 
laser and parametric gains, and demonstrate for the first time the existence, in such a cavity, of a 
new type of optical topological structures, which is a translationally or/and rotationally moving 
two-dimensional optical domain wall with Néel point defects (NDs). 

2. Modelling and analysis 
We consider an optical oscillator containing a laser gain g and a parametric gain γ, both being 
located between plane parallel mirrors. An optical field is formed inside this oscillator, starting 
from spontaneous emission when the gain exceeds a threshold. Since the field changes weakly 
during propagation between the cavity mirrors, we use the mean-field approximation implying that 
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the optical field is averaged over the longitudinal coordinate z. The dynamics of the two-
dimensional optical field (or the pattern) inside such an active cavity can be well described by the 
complex Ginzburg–Landau equation, which represents a universal description for parametrically 
excited waves of different natures. In order to take into account a saturable character of both  
the laser and parametric gains, we modify the complex Ginzburg–Landau equation to the 
following form: 
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Here E(x, y, t) denotes the optical field envelope, t the evolution variable (the time 
normalized by the photon life-time in the cavity), E  the complex conjugate of E, η the coefficient 
of linear losses, Red  the effective diffusion coefficient, Imd  the diffraction coefficient and 

22222 yx   the transverse Laplace operator, whereas x and y are the dimensionless 

transverse coordinates normalized by the width of the first Fresnel zone of the cavity. 
 

 
 

Fig. 1. Generation of field versus pump: (a) a complex isotropic field for the case of γ = 0, (b) a complex 
anisotropic field for g, γ > 0, and (c) a real field for g = 0. 

 

 
Fig. 2. Transverse spatial distributions of intensity (a) and phase (b) for the moving domain-wall loop with two 
NDs. The arrow indicates direction of translational motion. The parameters are as follows: g = 2.12, γ = 0.237 
and η = 1. 

First we analyze the homogeneous and steady-state solutions of Eq. (1). When γ = 0, Eq. (1) 
becomes phase invariant and so describes a dynamics of the class A laser. In this case the complex 
optical field vectors lean on the circle (i.e., the field is complex and isotropic), provided that the 
pump P is kept above a threshold (see Fig.1a). The phase invariance is broken when we have g = 0 
because of a presence of the parametric term E . Then Eq. (1) becomes phase bistable (see 

Fig. 1c). It describes a degenerate parametric oscillator for which the optical field is real. The 
homogeneous solutions have the two equivalent values, Eo and –Eo, i.e. the phase can acquire only 
the two values, 0 and , thus implying that the field is real. In the general case of g, γ > 0, the intra-
cavity optical field becomes complex and anisotropic, as illustrated in Fig. 1b. This means that the 
phase of the field has two preferable values that differ by  from each other.  
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Fig. 3. Transverse spatial distributions of intensity (a) and phase (b) for the rotating domain wall with the ND. 
The arrow indicates direction of rotation. The parameters are as follows: g = 1.2, γ = 0.063 and η = 1. 

To find inhomogeneous spatially extended structures of the optical field (the patterns) for 
different g/γ ratios, we solve Eq. (1) numerically using a split-step fast Fourier transform method 
with the periodic boundary conditions. For the finite Fresnel numbers of the cavity we introduce 
an aperture bounding the field in Eq. (1). As expected, the solutions of Eq. (1) for large (> 100) 
Fresnel numbers of the cavity acquire the form of optical vortices for the complex isotropic field 
(γ = 0) and the form of optical Ising domain walls for the real field (g = 0). However, the solution 
of Eq. (1) for the complex anisotropic field (g, γ > 0) gives a new optical composite topological 
structure in the shape of a loop (see Fig. 2). It consists of two Bloch domain walls connected with 
the two NDs [12]. The loop moves translationally (see Fig. 2) as a one-dimensional Bloch domain 
wall moves along its own transverse phase gradient [9]. The point is that the domain walls in the 
loop are oriented almost parallel to each other and their transverse phase gradients have the same 
signs. It is worth noting that all the structures formed in such a wide-aperture oscillator are 
independent of the boundary conditions. 

 
Fig. 4. Intensity (left panel) and phase (right panel) that occur when tracing around the centre of the structure 
with the ND (black lines) and in the case of optical vortex (red lines). 

For moderate Fresnel numbers (~ 10) of the cavity, the boundary conditions play an 
important role. In this case the solution of Eq. (1) represents a composite rotating structure which 
is the domain wall leaning on the cavity aperture, with the ND located in the centre (see Fig. 3). To 
get a more detailed insight into this structure (see Fig. 3), we trace the changes in the intensity and 
the phase occurring in the circle line located around the central point of the structure (see black 
lines in Fig. 4). For comparison, the red lines represent the same dependences for the optical 
vortex.  

One can see that there is certain similarity between these structures. However, there is also a 
difference in that the domain wall with the ND has two dips in the intensity over which the phase 
changes smoothly by , as it takes place for the Bloch domain walls. The phase gradients of the 
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left and right parts of the domain wall are opposite to each other and the ND separates them  
(see Fig. 3), so that the phase has a shape of propeller blades in the three-dimensional 
representation. The phase histogram displayed in Fig. 5 confirms that we indeed deal with the 
Bloch-type domain walls.  

 
Fig. 5. Phase histogram corresponding to the structure shown in Fig. 3. 

3. Experimental results and discussion 
To demonstrate experimentally the existence of the optical domain walls with the topological NDs, 
we use a photorefractive ring oscillator (see Fig. 6). Two counter-propagating pump beams from a 
single-frequency laser (532 nm) illuminate a photorefractive crystal of strontium-barium niobate 
(SBN) mounted inside a quasi-self-imagining ring cavity. By changing the ratio of the intensities 
of the pump beams with a filter F of variable optical density, one can change the contributions of 
the laser-type gain due to the two-wave-mixing and the parametric-type gain due to the four-wave-
mixing. The Fresnel number of the oscillator cavity is selected by positioning properly the intra-
cavity lenses which are arranged in a nearly self-imaging configuration [9].  

As expected, we have observed the vortices and the domain walls in the output beam for the 
two extreme cases when F has either minimal (0) or maximal (1) transmissions. At the 
intermediate F transmissions ( 0.2), we have recorded an interferogram of the output field 

 
Fig. 6. A scheme of wave-mixing ring oscillator used in our experiments. M: mirrors, BS: beam splitters,  
L: lenses, SBN: photorefractive strontium-barium niobate crystal, F: variable-density filter, and CCD: charge-
coupled device (camera). 
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structure shown in Fig. 7a. The insert in Fig. 7a displays a ‘fork’ located in the central part of the 
interferogram and the smooth shifts in its upper and lower parts, which are oppositely directed. 
Therefore the interferogram readily indicates that there is a vortex-like phase structure in the 
centre and Bloch-type domain wall structures with the opposite phase gradients in the adjacent 
sections. The structure rotates as shown in Fig. 7a. Processing the interferogram with a Fourier 
filtering method, we have obtained the appropriate spatial distributions of the intensity (see 
Fig. 7b) and phase (see Fig. 7c). They confirm that the point topological defect present in the 
centre of the structure is the ND.  

 

 

 

 

Fig. 7. Interferogram of the output 
beam (a), and reconstructed 
transverse spatial distributions of the 
intensity (b) and the phase (c). 

 

4. Conclusion 
The results reported in this study demonstrate that the optical oscillator with the mixed parametric 
and laser gains can generate composite optical topological objects build from the Bloch-type 
domain walls and the topological NDs, which reveal a spontaneous (translational or/and rotational) 
motion along the direction given by their own transverse phase gradients.  
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Анотація. На основі обчислень та експериментів показано, що оптичний параметричний 
генератор з комбінованим параметричним і лазерним підсиленням підтримує формування 
трансляційно або/і обертально рухомих композитних топологічних структур у формі 
оптичних доменних стінок з точковими дефектами, подібними до неєлівських топологічних 
дефектів у феромагнетиках і рідких кристалах. 

 
 


