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Abstract. We have analyzed the effect of edge structural dislocations in solid-
crystalline structures on the topology of optical indicatrix parameters. It has been 
found that consideration of strict boundary conditions leads to zeroing of the stress 
tensor components in the vicinity of dislocation core. Subsequently, piezooptically 
induced birefringence in the vicinity of the dislocation core conditions the 
appearance of optical vortices around this core. Basing on our analysis, we have 
demonstrated that, even with small Burgers vectors and intermediate values of 
piezooptic coefficients, the edge dislocation can be detected in the polarized light 
using optical microscopes. 
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1. Introduction  
Topological defects (TD) of optical indicatrix (OI) orientation represent an important tool for 
creating defects of light wave front, which induce optical vortices [1–4]. Optical beams bearing the 
vortices (or orbital angular momentum abbreviated hereafter as OAM) have found their 
applications in a number of novel branches of science, e.g. information processing [5], quantum 
cryptography [6, 7], and quantum teleportation [8]. They can also be used while manipulating 
microparticles [9]. Furthermore, discovery of the beams carrying nonzero OAMs has given a start 
for such new branches of optics as a singular optics [10]. 

The TDs of OI orientation or, in more exact terms, the structural defects in liquid crystals 
probably have for the first time been used for optical vortex generation by the authors of 
Refs. [11–14]. As follows from these works the electric field component of the outgoing 
electromagnetic wave at the spin angular momentum (SAM) to OAM conversion process, in the 
case when the beam propagates through a system consisting of a right-handed circular polarizer, a 
sample with the liquid crystal structural defect, and a left-handed circular analyzer can be 
determined by the equation: 
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where m = 2q denotes the number of helicoidal lobes in the helical electromagnetic mode, q the 
strength of the liquid-crystalline defect, ΔГ the optical phase difference, aE  the incident plane-

wave amplitude, 0  the angle of director orientation at 0  , and  outE   the outgoing wave 

amplitude. 



Topological defects 

Ukr. J. Phys. Opt. 2015, Volume 16, Issue 3 139 

The first term in the Eq. (1) describes the outgoing plane wave with the same SAM value as 
for the incident wave (–ħ), while the second term corresponds to a helical mode bearing the OAM. 
The phase front of the incident beam is taken to be approximately plane, while the SAM of the 
incident photons is equal to Sinc = –ħ. The requirement of conservation of the total angular 
momentum leads to the following relation for the angular momentum transformation: 

inc outJ J M  ,     (2) 

where  inc incJ S    means the total angular momentum for the incident photon, 

2 0out out outJ L S q        the total angular momentum for the emergent photon 

( outS   , 2outL q   ), and outL  the OAM for that photon. Thus, the mechanical angular 

momentum transferred to a material medium due to the Beth effect [15] is equal to M   . As 
seen from Eq. (1), the charge of the optical vortex m is determined by the strength of the liquid 
crystal defect q. As it is seen from Eq.(1) in the case of liquid crystals, the strength of the structural 
defect of the director orientation is equal to the strength of the TD of OI orientation. However in 
the solid transparent inhomogeneous materials the strength of TD of OI orientation is unique 
parameter by which the charge of the vortex can be defined. Summing up, the liquid-crystal 
structural defects lead to appearance of defects, or singularities, of the wave front and, thus, to 
appearance of the optical vortices.  

Recently we have shown [16, 17] that dislocations in solid crystalline materials also lead to 
appearance of dislocations of the phase front. When compared with the liquid crystals, this process 
is more complicated. The dislocations produce specific spatial distributions of mechanical stress 
around their cores, while the stresses induce the changes in the refractive indices via a piezooptic 
effect, thus resulting in the appearance of TDs of OI orientation. Moreover, the elastic fields of 
edge and screw dislocations act upon the refractive indices in a different manner. In particular, the 
screw structural dislocations produce the TDs with the strength equal to ½ and so singly charged 
optical vortices, while the edge dislocations impose the TDs with the strength equal to 1 and 
doubly charged optical vortices.  

In the studies [16, 17] we have analyzed the spatial distribution of the OI angle produced by 
the elastic field around the edge dislocation core, basing on the simplified relations [18, 19] for the 
stress tensor components: 
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where Gk are the shear modules, l  the Poisson ratios (k, l = 1, 2, 3), X and Y the coordinates, and 

b denotes the Burgers vector. Eqs. (3) are valid when the edge dislocation with the Burgers vector 
b parallel to the direction  [100] and the dislocation line parallel to [001] are dealt with. The 
module of the Burgers vector is then equal to 

2 2 2

2 2
a ab h k l    ,    (4) 

where a is the lattice parameter and h, k and l the Miller indices. Here [hkℓ] denotes the direction 
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associated with the basis of direct-lattice vectors, which is perpendicular to the lattice plane (hkl). 
Note that this formula can be obtained from the general relations of Refs. [18–20], provided that 
the radius of the dislocation core becomes zero and the crystalline sample is supposed to have 
infinite size. In other words, the boundary conditions are not considered while deriving Eqs. (3). 

Since one can hope to detect the TDs of OI orientation, and the resulting optical vortices, 
with optical microscopic observations, a simple new method for revealing structural dislocations 
can, in principle, be developed on this basis. However, knowledge on the exact spatial distribution 
of OI parameters is then needed. The aim of the present work is to analyze the distribution of OI 
parameters, basing on consideration of general equations for the stress distribution around the core 
of the edge dislocations in crystals. 

2. Results of analysis 
Below we will consider the edge dislocation appearing in the crystals that belong to both the cubic 
(the point symmetry groups m3m, 432 and 43m ) and trigonal (the groups 3m, 32 and 3m ) 
systems, with the Burgers vector parallel to the [010] axis and the dislocation line parallel to the 
[001] axis. Since, from the viewpoint of symmetry, the elastic and piezooptic properties of the 
crystals belonging to those cubic and trigonal groups are the same, we perform our analysis only 
for the example cases of NaCl (the group m3m) and LiNbO3 (the group 3m). 

Let us analyze the general relations for the stress tensor components taken from Ref. [18, 20] 
and written in the right-handed cylindrical coordinate system , ,r Z : 
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where R is the radius of a crystalline cylinder and 0r  the radius of the dislocation core. As shown 

in Ref. [20], these relations are valid for a hollow cylinder with its bases subjected to loading. On 
the other hand, the complete conditions have to include the state at which the bases of the cylinder 
are free of loading and the surfaces at r = R and r = r0 are free of stresses.  

As follows from the analysis [20], the solution of the latter problem, most probably, is 
impossible. In Ref. [20], the following boundary conditions have been used: 

0
1 6 , 0, 0 r R   , 

0
2 , 00 r R   and 3 /20 Z L  , with L being the height of the cylinder. Then, using the relations 
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one can rewrite Eqs. (5) in the Cartesian coordinate system as  
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Here we neglect the stress tensor component 3 , since it does not affect the birefringence 12n  

and the angle of OI orientation 3  (see below). At r0 = 0, Eqs. (7) may be represented as 
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Eqs. (8) are reduced to Eqs. (3) when the sample radius R approaches to infinity and at the 
change of the Burgers vector component b2 to b1. In case of the Burgers vector parallel to the [010] 
axis, the reduced equations become as follows: 
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Now we wish to show that the core radius plays important role in the vicinity of the 
dislocation nucleus. As seen from Fig. 1, the stress tensor components 1  and 6  do not become 

infinite when the radial coordinate (or the X and Y coordinates) reaches the value r0. Instead, the 
components 1  and 6  acquire some maximum value at r > r0 and become zero when the radial 

coordinate is equal to the radius of the dislocation core (r = r0). The component 2  remains finite 

at r = r0, probably because the boundary conditions do not include the requirement 2 = 0 at r = R 

and r = r0. The dependences of the stress tensor components at r < r0 have no physical meaning, 
since the dislocation core can be considered as some other phase. Finally, let us notice that 
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simplified Eqs. (3) and (9) yield non-physical solutions, the stress tensor components following to 
infinity under zeroing of the X and Y coordinates.  
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Fig. 1. Coordinate dependences of stress tensor 
components as calculated at R = 10–3 m for the case 
of edge dislocation in NaCl. Inserts show depen-
dences of stress tensor components calculated in the 
vicinity of the dislocation core. 

 

 
While calculating the dependences displayed in Fig. 1, we have used the following 

parameters for the NaCl crystals: 1 2 3 11.8 GPaG G G    and 1 2 3 0.028     , 
12 2

11 22.9 10 m /NS   , 12 2
12 4.8 10 m /NS     and 12 2

11 1.27 10 m /N   , 
12 2

12 2.58 10 m /N   , 12 2
44 0.84 10 m /N    , n = 1.54 (the refractive index at the light 

wavelength of   = 632.8 nm), R = 10–3 m, and r0 = 20 nm (see Refs. [21–23]). 
Using a standard matrix representation for the symmetric tensors, one can express the 

piezooptic effect in terms of the changes iB  in the optical impermeability coefficients (or the 

refractive indices in , since 2(1/ )i iB n ), which are imposed by the mechanical stresses j  [24]: 

0
i i i ij jB B B      .     (10) 

Here ij  is the fourth-rank piezooptic tensor, and iB  and 0
iB  the second-rank impermeability 

tensors of respectively stressed and free sample, which are written in the matrix form. 

2.1. NaCl crystals 
Let us begin with the NaCl crystals. If a wide light beam with almost plane front propagates along 
the Z axis, the birefringence and the angle of OI rotation induced piezooptically become as 
follows: 
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These equations are written for the component of the Burgers vector b2. After inserting 
Eqs. (7) for the mechanical stress tensor components into Eqs. (11), one readily obtains the XY 
spatial distribution of the birefringence and the angle of OI orientation shown in Fig. 2.  
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Fig. 2. XY distributions of birefringence (a, b) and angle of OI orientation (c, d, e) in NaCl calculated with 
Eqs. (7) and (11) (a, c) and simplified Eqs. (9) and (11) (b, d). Inserts show the same distributions calculated in 
the vicinity of the dislocation core. 

As seen from Fig. 2, the XY distributions of the OI rotation calculated with Eqs. (7) and (11) 
are more complicated than those obtained using their simplified versions, Eqs. (9) and (11). 
Nonetheless, the strength of the TD of OI orientation located in the centre of the beam cross-
section is equal to 1 in the both cases. In the vicinity of the dislocation core, the spatial 
distributions of the birefringence and the OI orientation calculated on the basis of Eqs. (7) and (11) 
become almost the same as those calculated with Eqs. (9) and (11).  
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Fig. 3. Dependence of the angle of OI rotation around 
the Z axis on the tracing angle   calculated for NaCl 
under the conditions of light propagation along the Z 
axis and r = R/2. Insert shows the same dependence 
calculated at r = 0.5 µm. 

 

Let us assume that the coordinates X and Y approach the radius of the dislocation core and 
take into account that the stress component 2  should be zero at r = r0 due to the boundary 

conditions (see Eqs. (7) and (11)). Then the birefringence has to become zero at r = r0. This 
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corresponds to the exact conditions needed for generating a doubly charged optical vortex, i.e. a 
zero light intensity and an undefined phase of optical wave at r = r0. The angle of OI rotation is 
then the same as the tracing angle  . Moreover, as seen from Fig. 3, the dependence of the angle 

of OI rotation on the tracing angle is almost linear at r = R/2. On the other hand, it becomes 
exactly linear close to the dislocation core (see Fig. 3, insert). These facts imply the appearance of 
the TD of OI orientation, with the strength equal to 1, and a possibility for generating an almost 
canonical, doubly charged optical vortex.  

2.2. LiNbO3 crystals 
\Let us now proceed to the case of LiNbO3 crystals and write out the theoretical relations and the 
experimental data necessary for further analysis:  
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12 2
44 17.10 10 m /NS    [27], 1 2 58.5 GPaG G   and 3 71.6 GPaG  , 1 2 0.223    and 

3 0.289  , 2.28647on   (at   = 632.8 nm), R = 10–3 m, and r0 = 20 nm. The birefringence and 
the angle of OI rotation read respectively as 
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Fig. 4. XY spatial distributions of birefringence (a, b) and angle of OI orientation (c, d) in LiNbO3 calculated with 
Eqs. (7) and (13) (a, c) and simplified Eqs. (9) and (13) (b, d). Inserts show the same distributions calculated in 
the vicinity of the dislocation core. 
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The strength of the TD of OI orientation for the LiNbO3 crystals turns out to be the same as 
for the NaCl crystals. As seen from Fig. 4, the spatial distributions of the birefringence and the OI 
orientation calculated with Eqs. (7) derived after considering the boundary conditions are almost 
the same as those calculated using Eqs. (9), which neglect the boundary conditions. In the vicinity 
of the dislocation core, the birefringence in LiNbO3 reaches the value of 4×10–4. For achieving the 
phase difference 122 /n d     equal to  , at which the efficiency of the SAM-to-OAM 

conversion is maximal, a thin crystalline plate with the thickness d  equal to ~ 0.8 mm is enough. 
Hence, optical observations of the edge dislocation in the polarized light using an optical 
microscope seem to be quite feasible. In particular, using a circularly polarized incident light and 
an orthogonal circular analyzer, one can easily observe the appearance of the optical vortices 
around the dislocation core. 

3. Conclusions 
In the present work we have analyzed the spatial inhomogeneity of the optical birefringence and 
the angle of OI rotation, which are induced by mechanical stresses caused by the structural edge 
dislocation. Cubic and tetragonal crystals have been exemplified by NaCl and LiNbO3, 
respectively. In our simulation we have used relations for coordinate dependencies of stress tensor 
components derived with accounting of approximate boundary conditions. 

We have found that accounting for the strict boundary conditions leads to zeroing of the 
stress tensor components and, subsequently, of the piezooptically induced birefringence in the 
vicinity of the dislocation core, thus meeting the exact conditions needed for the appearance of 
optical vortices, with a light ring located around the dislocation core. It is important that consistent 
consideration of the boundary conditions removes a non-physical solution, infinitely large 
mechanical stress components calculated for the case if the radial coordinate approaches the 
dislocation centre. 

It follows from our analysis that the edge dislocation can easily be detected in the polarized 
light, using an optical microscope, even in the case when the Burgers vectors are small enough and 
the piezooptic coefficients acquire some intermediate values. 
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Анотація. У роботі проаналізовано вплив крайових структурних дислокацій у кристалах 
на топологію параметрів оптичної індикатриси. Показано, що врахування строгих гранич-
них умов приводить до занулення компонент тензора механічних напружень і, як наслідок, 
оптичного двопроменезаломлення в околі серцевини дислокації, забезпечуючи точні умови 
для генерації оптичних вихорів зі світловим кільцем навколо ядра дислокації. Продемонст-
ровано, що навіть за умов малих векторів Бюргерса і невеликих значень п’єзооптичних 
коефіцієнтів крайові дислокації можна виявити в поляризованому світлі з використанням 
оптичного мікроскопа. 


