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Abstract. present the method for analyzing the anisotropy of acoustooptic figure of 
merit for optically uniaxial crystals and illustrate it on the example of crystalline 
paratellurite. This first part of the article deals with analysis of the isotropic 
acoustooptic interaction. The results of our calculations agree well with the 
experimental data known from the literature.  
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1. Introduction 
Crystalline tellurium dioxide or paratellurite, TeO2, is optically uniaxial and positive, and belongs 
to tetragonal point symmetry group 422 [1]. It is characterized by high enough refractive indices 
( 2.2597on   and 2.4119en   at the light wavelength of 632.8 nm   [2]). TeO2 crystal reveals 

a noticeable optical activity effect: its rotatory power is as large as (86.9±0.5) deg/mm at 632.8 nm 
[2]. Perhaps, the most important property of paratellurite is high acoustooptic (AO) efficiency. 
Therefore TeO2 is one of the renown crystalline AO materials, being among such substances as 
mercurous halides (Hg2Cl2 and Hg2Br2) [3, 4] or chalcogenides (e.g., Tl3PSe4 [5]).  

Earlier we have shown [6] that the AO prominence of paratellurite appears owing to ferro-
elasticity of this crystal. It exhibits a ferroelastic tetragonal-to-orthorhombic phase transition under 
high pressures [7]. The transition is accompanied by softening of the acoustic phonon which 
propagates along the direction [110] and is polarized parallel to [110]  [8]. As a matter of fact, the 

maximum AO figure of merit (AOFM) M2 at the normal conditions, which is equal to 
15 31200 10 s /kg  [9], is just achieved in the case of anisotropic AO interaction with the acoustic 

wave (AW) described above. Notice also that the highest AOFM in TeO2 crystals is observed 
when the light eigenwaves are almost circularly polarized. In other words, then the incident 
circularly polarized light propagates along the direction close to the optic axis where the natural 
optical activity affects essentially the eigenwave polarization [9]. When the incident optical wave 
of different polarizations interacts with the slowest AW, the AOFM of TeO2 crystals is also very 

high. For example, the AOFM is decreased only down to 15 3(600 800) 10 s /kg   [9] for the AO 

interaction of arbitrarily (or linearly) polarized incident waves with the same shear AW.  
Probably, the most comprehensive experimental data for the AOFM of TeO2 crystals are 

presented in Ref. [10] (These data are collected for a comparison in Table 1 appearing in the final 
chapter of this work). However, all of those values have been reported only for the cases when the 
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propagation and polarization directions of the optical wave and the AW are parallel to the principal 
crystallographic directions. At the same time, one cannot exclude that still larger M2 values can 
exist, which correspond to the interaction of waves propagating along arbitrary directions with 
respect to the crystallographic coordinate system. Let us consider this point in detail. The AOFM 
is given by the relation 

6 2

2 3
ef

ij

n p
M

v
 ,     (1) 

where   is the density of material, n its refractive index, ijv  the AW velocity (with the indices i 

and j corresponding to the AW propagation and polarization directions, respectively), and efp  the 

effective elastooptic coefficient (EEC). The main contribution to the AOFM comes from the AW 
velocity and the EEC. In principle, certain values of these parameters can provide an interaction 
geometry for which the highest M2 value is reached. In particular, the highest AOFM values are 
known to be reached for the cases of interactions with the slowest AW. 

On the other hand, the slowness of the AW makes a negative influence on the switching 
speed of AO devices. This means that searching for experimental geometries in which the AOFM 
is high enough due to high EEC but not a slowness of the AW represents an important problem. 
This analysis still expects developing of the appropriate techniques. Recently we have suggested 
an analytical approach for analyzing the spatial anisotropy of AOFM for the isotropic media and 
cubic crystals [11]. It has been shown that six different types of AO interactions are peculiar for 
the cubic crystals, each of these types being characterized by its own AOFM and revealing a 
certain anisotropy. Obviously, a number of the interaction types should increase for anisotropic 
optically uniaxial crystals, at least because the anisotropic types of AO diffraction should be 
involved into consideration.  

The aim of the present work is to analyze the anisotropy of AOFM for TeO2 crystals. This is 
based on a general analytical approach developed for assessing the spatial anisotropy of the M2 
parameter in the optically uniaxial crystals of point symmetry groups 4/mmm, 422, 42m  and 
4mm. These point groups are characterized by the same tensors of elastic stiffness and elastooptic 
coefficients. In this first part of the study we present the analysis for the cases of isotropic AO 
diffraction. 

2. Results of analysis 
For the crystals of the point symmetries 4/mmm, 422, 42m  and 4mm, including the case of TeO2, 
the elastic stiffness tensor contains six independent components (Voigt notation is used) 

11 22C C , 12C , 13 23C C , 33C , 44 55C C  and 66 11 12( ) / 2C C C  , while the elastooptic 

tensor has seven independent coefficients ( 11 22p p , 12 21p p , 13 23p p , 31 32p p , 33p , 

44 55p p  and 66 11 12( ) / 2p p p   [1]). When studying the anisotropy of M2 coefficient for 

TeO2 crystals, we will use the methods developed in our recent work [11]. Namely, we will 
construct and analyze cross sections of the surfaces of EEC, AW slowness and AOFM, which are 
obtained by rotating the interaction plane around Z and X axes that correspond to crystallographic 
axes c and a, respectively. Notice that, for all of the point groups 4/mmm, 422, 42m  and 4mm, the 
coordinate system XYZ is associated with eigenvectors of the optical Fresnel ellipsoid, being 
coincident with the crystallographic system abc. 
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To begin, let us consider the AW propagating in the XZ plane in TeO2. The dependences of 
quasi-transverse AW velocities on the wave vector orientation in the XZ plane are as follows: 
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The same relation for the quasi-longitudinal AW velocity takes the form 
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where   is the angle between the AW vector and the X axis in the XZ plane, i.e. the angle of 
rotation of the AW vector around the Y axis (see Fig. 1a). For the other interaction planes rotated 
by some angles Z  around the Z axis (i.e., in the new coordinate systems X Y Z  ), the structure of 

the elastic stiffness tensor change, too. The new components of this tensor can be determined after 
rewriting this tensor in the new coordinate system according to a known procedure [1]. Performing 
this procedure for the elastic stiffness tensor, one can see that the components 13C , 23 13C C  , 

33C , 44C  and C55 = C44 remain the same, whereas the dependences of the coefficients 11( )ZC  , 

22 11( ) ( )Z ZC C   , 12 ( )ZC   and 66 ( )ZC   on the angle Z  are described as 
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The new elastic stiffness coefficients 16C  and 26C  appear in the tensor thus rewritten.  

One can notice that the expressions for the components of the Christoffel tensor for each of 
the X Z  planes remain the same as for the initial XZ plane. Substituting Eq. (5) into Eqs. (2)–(4), 
one obtains the AW velocities for all of the possible AW vector directions. As seen from Eq. (5), 
the presence of four-fold axis among the symmetry operations causes both the optical and acoustic 
equivalences of a and b directions and, as a result, the crystallographic planes ac and bc are also 
equivalent [1].  

Rotation of the interaction plane by the angle X  around the X axis (see Fig. 1b) will change 

the expressions for the components of the Christoffel tensor and the elastic stiffness coefficients 

13C , 33C  and 44C . The Christoffel tensor will become much more complicated. Then the AW 

velocities can be obtained using standard numeric techniques. 
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(a) (b) 

Fig. 1. Crystallographic coordinate system coupled with a Cartesian system XYZ, and a new coordinate system 
X Y Z   coupled with the plane X Z  of AO interaction, as obtained under rotation of the interaction plane 

around Z (a) and X (b) axes. 

Anisotropy of the acoustic and elastooptic properties of TeO2 crystals allows a variety of 
possible types of AO interactions. Actually, we will demonstrate that there are nine different types 
of AO interactions in TeO2 crystals. They include six types of isotropic interactions and three 
types of anisotropic interactions between the AWs and the optical waves. Regarding the isotropic 
interactions, one has the following interaction types. 

Type (I): the AO interaction of the longitudinal AW propagating in the ZX   or Z X  planes, 
and the incident optical wave with polarization of ordinary beam which is perpendicular to the 
interaction plane;  

Type (II): the AO interaction of the longitudinal AW propagating in the ZX   or Z X  planes, 
and the incident optical wave, with polarization of extraordinary beam, electric induction vector of 
which lies in the interaction plane at the angle B  with respect to the X or X   axis ( 3 sin BD D   

and 1 cos BD D  , with D denoting the electric induction and B  the Bragg angle);  

Type (III): the AO interaction of the transverse AW QT1 propagating in the ZX   or Z X  
planes and polarized in the same planes, and the incident optical wave, with polarization of 
extraordinary beam, of which polarization vector lies in the interaction plane at the angle B  with 

respect to the X or X   axis ( 3 sin BD D   and 1 cos BD D  );  

Type (IV): the AO interaction of the transverse AW QT1 and the incident optical wave with 
polarization of ordinary beam which is perpendicular to the interaction plane;  

Type (V): the AO interaction of the transverse AW QT2 propagating along the X ( X  ) axis 
and polarized along the Y (Y  ) axis, and the incident optical wave, with polarization of 
extraordinary beam, of which polarization vector lies in the interaction plane at the angle B  with 

respect to the X or X   axis ( 3 sin BD D   and 1 cos BD D  );  

Type (VI): the AO interaction of the AW QT2 and the incident optical wave with polarization 
of ordinary beam which is perpendicular to the interaction plane.  

Since TeO2 reveals large natural birefringence, the anisotropic types of interaction can be 
easily implemented in this material. There are three AO interaction types of the incident optical 
wave with the longitudinal AW and the two normal transverse AWs in TeO2. These types of 
interaction will be considered in detail in the second part of this work. 

When the AW induces changes in the extraordinary refractive index ne due to elastooptic 
effect, the wave vector diagram will change for every new propagation direction of the AW in the 



 

Ukr. J. Phys. Opt. 2014, Volume 15, Issue 3 136 

interaction planes (see Fig. 2a). Namely, this will change the Bragg angle, the lengths of the wave 
vectors of the incident and diffracted light waves, and the AW vector. The angle of orientation of 
the AW vector will change, too. These changes will impose changes in the induced elastic strain 
tensor components and, as a consequence, they will affect the EEC value. However, if we fix the 
Bragg angle, the angle   of inclination of the AW vector may be found using the relation 
between the tangential angle   and the polar angle   (see Fig. 3): 

2

2
tancot a
b


   , 180   ,    (6) 

where a and b stand for the semi axes of the Fresnel ellipsoid. Notice that for the known optically 
uniaxial crystalline materials, the deviations of the angle   from the value corresponding to the 
isotropic materials is small enough, since the elliptical cross section of the Fresnel ellipsoid surface 
is very close to a circle. 

(a) (b) 

(c) 

Fig 2. Vector diagrams of isotropic AO interaction 
types in optically positive uniaxial crystals for the 
X Z  (a), XZ   (b) and XY (c) planes: double-side 

arrows and crossed circles represent polarization of 
the optical waves, whereas ik , dk  and ack  are wave 
vectors of the incident optical wave, diffracted optical 
wave and the AW (vertical crossed ellipses indicates 
projections of polarization on 'Y  and Y axes for 
extraordinary and ordinary wave, respectively; 
horizontal crossed ellipses indicates polarization 
parallel to Z axis). 

 

Fig. 3. Explanation of relationship between tangential 
angle   and polar angle  . 

Let us now consider in much detail the AO interaction type (I) when the quasi-longitudinal 
AW 11 QLv v  propagating in the XZ plane interacts with the incident optical wave with the electric 

induction vector parallel to the Y axis. Suppose first that the longitudinal AW 11 QLv v  propagates 

along the X direction. Then the electric field of the diffracted optical wave and the acoustically 
induced increment of the refractive index are as follows: 
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2 2 2 21 1 2E B D p e D   ,    (7) 
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Rotation of the AW vector in the XZ plane means that we are to rewrite the strain tensor 
including the only component 1e  in the coordinate system rotated around the Y axis by the angle 

 . Then the three tensor components appear: 
2 2

1 1 3 1 5 1' cos ,   ' sin ,   ' sin cose e e e e e       .   (9) 

As a result, the EEC is given by. 
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Under rotation of the interaction plane around the Z axis by the angle Z , the deformation 

tensor components and the EEC will change to 2
1 1'' ' cos Ze e  , 2

2 1'' ' sin Ze e  , 3 3'' 'e e , 

4 5'' ' sin Ze e   , 5 5'' ' cos Ze e  , 6 1'' 0.5 ' sin cosZ Ze e     and 

 
 

(I) 2 2 2 2 2 2
11 12 13

2 2 2 2 2 2
21 22 23

2 2
66

sin cos cos cos sin sin

cos cos cos cos sin sin

sin 2 cos

Z Z Zef

Z Z Z

Z

p p p p

p p p

p

  

  



     

     

 

.  (11) 

Under rotation of the interaction plane around the X axis by the angle X , the deformation 

tensor components and the EEC may be written as, 1 1''' 'e e , 2
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Then the AOFM for the type (I) of AO interaction becomes as follows: 
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were ,( , )QL Z Xv   defines the change in the AW velocity occurring in the X Z  or XZ   planes.  

As seen from Fig. 4 and Fig. 5, the anisotropy of the AOFM arises from the anisotropy of 

EEC. The parameter (I)
2M  reaches its maximum 15 333.3 10 s /kg  at  =90 deg and 0Z   and 

180 deg, i.e. for the directions of AW propagation where the EEC (I)
efp  approach maximal value.  
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Fig. 4. Dependences of EEC (I)
efp  (a), AW slowness (b) and AOFM (I)

2M  (c) on the direction of AW vector 

(angle  ) at different orientations of the interaction plane ( Z  is angle of rotation around the Z axis). 
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Fig. 5. Dependences of EEC (I)
efp  (a), AW slowness (b) and AOFM (I)

2M  (c) on the direction of AW vector 

(angle  ) at different orientations of the interaction plane ( X  is angle of rotation around the X axis). 
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Let us proceed to the type (II) of AO interactions, when the longitudinal AW 11 QLv v  

propagating along the X axis interacts with the optical wave, of which electric induction vector lies 
in the XZ plane at the angle B  with respect to the X axis ( 3 sin BD D   and 1 cos BD D  ). 

Here B  is chosen to be equal to 4 deg (see Ref. [11]). The electric field of the diffracted optical 

wave is given by 

1 1 1 11 1 1

3 3 3 33 1 3
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The strain tensor components involved are given by Eqs. (9). The EEC for the interaction 
plane XZ reads as  
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The relation for (II)
efp  in arbitrary X Z  plane of interaction is as follows: 
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Similarly, the (II)
efp  parameter for arbitrary /XZ  plane of interaction may be represented as 
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( cos sin sin sin cos )

cos cos ( )

( cos sin sin sin cos )

(1 cos cos ( )) cos ( ) cos sin 2

X bef

X X

X b

X X

X b b X

p

p p p

p p p

p

 

 

 

 

   

  

    

 

     

    

  (17) 

The peculiarity of this AO interaction type is that the AOFM almost does not depend on the 
angle of rotation of the interaction plane around the Z axis.  

Finally, the AOFM for the type (II) of AO interaction is given by the relation 

 2(II)6
(II)
2 3

,( , )

ef

QL Z X

n p
M

v 


  

,     (18) 

As seen from Fig. 6 and Fig. 7, this AO interaction type is characterized by higher AOFM 
value. Its value found for the XZ   plane is about (II)

2M  = 15 369.4 10 s /kg  at  =111, 291 deg 

and 0X   and 180 deg (see Fig. 7). The anisotropy of AOFM is mainly influenced by the 

anisotropy of EEC.  
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Fig. 6. Dependences of EEC (a) and AOFM (II)
2M  (b) on the direction of AW vector at different orientations of 

the interaction plane ( Z  is angle of rotation around the Z axis). 

Now let us consider the type (III) of AO interaction of the optical wave, whose polarization 
vector lies in the XZ plane at the angle B  with respect to the X axis, with the transverse AW 

113 QTv v  propagating along the X axis and polarized along the Z axis. Here we have 

3 sin BD D   and 1 cos BD D  , and the strain tensor caused by the AW contains a single 

component 5e . When the AW vector direction changes in the XZ plane by the angle  , the 

following components of the strain tensor appear: 

1 5 3 5 5 5' sin 2 ,  ' sin 2 ,  ' cos 2e e e e e e       .   (19) 

The dependence of the EEC on the AW vector direction in the XZ plane is given by 

  
  

   

(III) 2
11 13

2
31 33

2 2
55

cos sin cos

sin sin cos

sin 2 cos sin

Bef

B

B

p p p

p p

p







    

    

   

   (20) 
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Fig. 7. Dependences of EEC (a) and AOFM (II)
2M  (b) on the direction of AW vector (angle  ) at different 

orientations of the interaction plane ( X  is angle of rotation around the X axis). 

For arbitrary X Z  and XZ   planes, the components of deformation tensor are as follows: 
2

1 1'' ' cos Ze e  , 2
2 1'' ' sin Ze e  , 3 3'' 'e e , 4 5'' ' sin Ze e   , 5 5'' ' cos Ze e  , 

6 1'' 0.5 ' sin cosZ Ze e     and 1 1''' 'e e , 2
2 3''' ' sin Xe e  , 2

3 3''' ' cos Xe e  , 

4 3''' 0.5 ' sin cosX Xe e    , 5 5''' ' cos Xe e  , 6 5''' ' sin Xe e   . The relation (20) should be 
generalized to  

 

 
  

 

 

(III) 2 2 2 2
11 12 13

2 2 2
31 32 33

2 2
55

2 2 2 2
21 22 23

2 2
31 3

cos [cos ( cos sin )sin cos

sin ( cos sin )sin cos

sin 2 (cos sin ))]

sin [cos cos sin sin cos

sin cos

Z B Z Zef

B Z Z

B

Z B Z Z

B Z

p p p p

p p p

p

p p p

p p

   

  



   

 

     

     

   

       

  

  

2
2 33

2 2
55

sin sin cos

sin 2 (cos sin )]

Z

B

p

p





    

   

  (21) 
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for arbitrary X Z  plane, whereas for arbitrary XZ   plane, Eq. (20) is replaced by  
(III) 2 2 2 2

31 32 33

2 2 2 2
11 12 13

2 2 2 2 2 2
55

(1 cos cos ( ))( sin cos )sin cos

cos cos ( )( sin cos )sin cos

(1 cos cos ( )) cos( ) cos (cos sin )

X b X Xef

X b X X

XX b b

p p p p

p p p

p

   

   

   

      

     

     

. (22) 

Then the AOFM reads as 

 
1

2(III)6
(III)
2 3

,( , )

ef

QT Z X

n p
M

v 


  

.     (23) 

As seen from Fig. 8, 9 the EEC and the coefficient (III)
2M  manifest petal-like dependences on 

the AW vector direction in the X Z  and XZ   planes. This type of interaction is characterized by 
highest AOFM values which can reach the maximum (III) 15 3

2 1143.8 10 s /kgM    at 90 degX   

and  =48.7, 131.3, 228.7 and 311.3 deg (see Fig. 9). The anisotropy of AOFM is a result of the 
anisotropy of EEC and AW slowness. However, the high value of the M2 parameter is due to 
relative slowness of the AW QT1. 

The fourth type of AO interaction can be implemented in TeO2 crystals whenever the QT1 
wave interacts with the optical wave with polarization of the ordinary beam. After rotating the AW 
vector by the angle  , the following strain tensor components arise: 

1 5 3 5 5 5' sin 2 ,  ' sin 2 ,  ' cos 2e e e e e e       .  (24) 
The corresponding change in the refractive index is then  

3
21 1 23 3

1 ( ' ' )
2 on n p e p e   .    (25) 

The EEC reads as 
(IV)

12 13( )sin 2efp p p   .    (26) 

The same relation for AO interaction in the X Z  plane is given by 

 
 

(IV) 2 2 2
11 12 13

2 2 2 2
21 22 23 66

sin cos sin cos sin

cos cos sin cos sin sin 2 cos sin

Z Z Zef

Z Z Z Z

p p p p

p p p p

  

   

    

     
, (27) 

whereas for the XZ   plane we have 

 

 

2

(IV) 2 2
11 12 132 2

2

2 2
21 22 232 2

2

66 2 2

sin cot( )
sin cos cos sin

1 sin cot ( )

1 sin cos cos sin
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sin 2 cos si
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X b
X Xef

X b

X X
X b

X b
X

X b

p p p p

p p p

p

 
 

 

 
 

 


 

       
   

 
     
   

  
  

   
n

.(28) 

As a result, the AOFM becomes as follows: 

 
1

2(IV)6
(IV)
2 3

,( , )

ef

QT Z X

n p
M

v 


  

.    (29) 
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Fig. 8. Dependences of EEC (a), AW slowness (b) and AOFM (III)
2M  (c) on the angle   for different 

orientations of AO interaction plane ( Z  is angle of rotation around the Z axis). 
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Fig. 10. Dependences of EEC (a) and AOFM (IV)
2M  (b) on the angle   for different orientations of AO 

interaction plane ( Z  is angle of rotation around the Z axis). 

Similarly to the previous cases, the EEC and the coefficient (IV)
2M  show petal-like 

dependences on the AW vector direction in the XZ plane (see Fig. 10 and Fig. 11). Notice that the 
EEC surface contains sections that differ by their signs. The AOFM reaches its maximum 

(IV) 15 3
2 892.5 10 s /kgM    at 90 degX   and  =44, 136, 224 and 316 deg (see Fig. 11b). The 

anisotropy of AOFM is caused by the both anisotropies of EEC and AW velocities. 
Let us analyze the AO interaction of optical waves with the AW QT2 ( 212 QTv v ) propagating 

along the X axis and polarized along the Y axis, which produces the strain tensor component 6e . 

Depending on the orientation of electric induction of the incident light wave (i.e., availability of 
the components 2D , 3 sin BD D   and 1 cos BD D   whenever the interaction plane is XZ plane), 

the AO interactions of the types (V) or (VI) are dealt with. Regarding the type (V), the strain 
tensor includes the two components dependent upon the AW vector orientation: 
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Fig. 11. Dependences of EEC (a) and AOFM (IV)
2M  (b) on the angle   for different orientations of AO 

interaction plane ( X  is angle of rotation around the X axis). 

 

6 12 4 12' 2 cos ,   ' 2 sine e e e     .   (30) 

Then the increment of the optical-frequency impermeability tensor and the corresponding 
increment of the refractive index reduce respectively to 

2 26 6 cos 0B p e        (31) 

and 
(V)

26 cos 0efp p   .    (32) 

At the rotation of the interaction plane around the Z axis the components of deformation 
tensor are 1 6'' ' sin cosZ Ze e   , 2 6'' ' sin cosZ Ze e    , 3'' 0e  , 4 4'' ' cos Ze e  , 

5 4'' ' sin Ze e   that lead to: 
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,  (34) 

with the EEC being equal to  

 

 
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0.5sin cos sin 2

0.5cos cos sin 2
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 

. 

Finally, rotation of the interaction plane around the X axis results in deformation tensor 
components 2 4''' ' sin cosX Xe e    , 3 4''' ' sin cosX Xe e   , 1''' 0e  , 4 4''' ' cos 2 Xe e  , 

5 6''' ' sin Xe e  , 6 6''' ' cos Xe e  . Then the EEC is given by relation: 
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 
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,  (35) 

Then the AOFM is as follows: 

 
2

2(V)6
(V)
2 3

,( , )

ef

QT Z X

n p
M

v 

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.    (36) 

The AOFM becomes the highest for the direction where the AW is the slowest 
( (V) 15 3

2 753.3 10 s /kgM    at 45Z   or 135 deg and 0   or 180 deg). The dependences of the 
(V)
2M  coefficient on the angles Z  and   are depicted in Fig. 12. As seen from Fig. 12, the 

dependence of AOFM in the X Z  plane on the angle   is similar to that of the (V)
efp  parameter. 

Notice that (V)
efp  is equal to zero at 90Z  , and 270 deg, when the AO diffraction does not occur 

at all. It is also interesting that the EEC surface consists of sections with the opposite signs. 
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Fig. 12. Dependences of EEC (a) AW slowness (b) and AOFM (V)
2M  on the angle   for different orientations 

of AO interaction plane ( Z  is angle of rotation around the Z axis). 
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Fig. 13. Dependences of EEC (a) AW slowness (b) and AOFM (V)
2M  (c) on the angle   for different 

orientations of AO interaction plane ( X  is angle of rotation around the X axis). 
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Fig. 14. Dependences of EEC (a) and AOFM (VI)
2M  (b) on the angle   for different orientations of AO 

interaction plane ( Z  is angle of rotation around the Z axis). 

Our final step is to consider the type (VI) of AO interaction when the polarizations of the 
incident and diffracted optical waves belong to the X Z  plane. According to Eqs. (30), the 
increment of the refractive index induced by the strains appearing due to the AW, and the EEC are 
given by 

3 2
16 6

1 (cos ( ) ) cos 0
2 e Bn n p e      ,   (37) 

(VI) 2
16(cos ( ) ) cos 0Befp p    ,    (38) 

The dependence of EEC on the angle Z  is as follows: 

 
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11 12

2 2
11 12
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.  (39) 

Rotation of the interaction plane around the X axis results in 
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As seen from Fig. 14 and Fig. 15, the AOFM (VI)
2M  reaches its maximal equal to 

15 31102.9 10 s /kg  at   = 0 or 180 deg and Z  = 45 deg. 
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Fig. 15. Dependences of EEC (a) and AOFM (VI)
2M  (b) on the angle   for different orientations of AO 

interaction plane ( X  is angle of rotation around the X axis). 

3. Conclusions 
Table 1 represents the AOFM values calculated for different geometries of isotropic AO 
interactions in TeO2 crystals, using the technique described above. One can notice good agreement 
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of the calculated values and the experimental data reported in Ref. [10]. Some small differences 
among those results may be caused by the fact that our calculations do not account for non-
orthogonality (or non-longitudity) of polarizations of the AWs, as well as the influence of 
piezoelectric effect on the AW velocities. Nonetheless, we conclude that the method developed in the 
present work is applicable for calculating the anisotropy of AOFM in optically uniaxial crystalline 
materials. Table 2 summarizes the maximal AOFM values typical for the six different types of 
isotropic AO interactions possible in TeO2. 
 

Table 1. Conditions of isotropic AO interactions and experimental AO parameters of TeO2 crystals 
reported in Ref. [10], together with the corresponding parameters calculated in this work. 

AW Optical wave EEC 
pef [10] 

Experimen
tal AOFM, 
10–15 s3/kg 

[10] 

Calculated 
AOFM, 

10–15 s3/kg 

Propaga-
tion 
direction 

Polariza-
tion 
direction 

v, m/s 
[10] 

Propaga-
tion 
direction 

Polariza-
tion 
direction 

   

[100] [100] 2980 [010] [100] p11 0.048 0.044 
[100] [100] 2980 [010] [001] p31 10.6 8.0 
[001] [001] 4260 [010] [100] p13 34.5 33.3 
[001] [001] 4260 [010] [001] p33 25.6 24.7 
[110] [110] 4210 [ 1 10] [110] (p11+p12+2

p66)/2 
0.802 0.772 

[110] [110] 4210 [110] [001] p31 3.77 3.00 
[101] [101] 3640 [ 1 01] [010] (p12+p13)/2 33.4 32.1 
[110] [1 1 0] 617 [001] arbitrary (p11–p12)/2 793 928* 
[101] [101 ] 2080 [010] [100] (p11–p13)/2 77.7 55.0 

*M2 is calculated as the mean value of AOFM’s which are equal to 1102.9 15 310 s /kg  and 753.3 15 310 s /kg . 
 
Table 2. Maximal values of AOFM M2 calculated for different types of AO interactions in TeO2 
crystals and description of the corresponding geometries. 

Propagation direction of AW  Type of 
AO 
interaction 

Angle  , 
deg 

Angle 
,Z X

, deg 
Type of 
AW 

Polarization of 
incident optical wave 

AOFM M2, 
10–15 s3/kg 

(I) 90  0Z   and 180 QL parallel to [010] 
direction 

33.8 

(II) 111, 291 
X

=0 and 180  QL  almost parallel to the 
direction of 
propagation of the AW 

69.4 

(III) 48.7, 131.3, 
228.7 and 
311.3 

X
=90 QT1  almost parallel to 

[001] direction  
1143.8 

(IV) 44, 136, 224 
and 316 X

=90 QT1 almost parallel to 
[110] direction  

892.5 

(V) 0 and 180 
Z

=45 and 135  QT2  parallel to [110] 
direction 

753.3 

(VI) 0 and 180 
Z

=45 QT2  almost parallel to 
[110] direction  

1102.9 
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As seen from Table 2, the maximal AOFM characteristic for the AO interaction with the 
quasi-longitudinal wave is not high enough, being equal to 69.4 15 310 s /kg . This value 
corresponds to the type (II) of AO interactions. Higher M2 values are typical for the types (III), 
(IV), (V) and (VI) of AO interactions with the QT1 and QT2 waves. Following from our AO 
anisotropy analysis performed for all of the cases of isotropic diffractions in TeO2 crystals, we 
conclude that the highest 2M  value ( (III) 15 3

2 1143.8 10 s /kgM   ) is reached when we deal with the 
type (III) of AO interaction. Then the incident optical wave polarized almost parallel to [001] 
direction and propagating in the XY plane (i.e., in the crystallographic plane ab) interacts with the 
quasi-transverse AW QT1 propagating in the ab plane almost parallel to [110] direction and 
polarized parallel to [110]  direction. This high 2M  value represents a combined consequence of 
both high EEC value and a slowness of the AW.  
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Анотація. Запропоновано метод аналізу анізотропії коефіцієнта акустооптичної якості 
для оптично одновісних кристалів на прикладі кристалічного парателуриту. В першій 
частині статті представлено результати аналізу ізотропної акустоптичної взаємодії. 
Дані розрахунків добре узгоджуються з відомими експериментальними результатами.  


