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Abstract. In order to correct the errors present in our recent study (Savaryn V. et al. 
Ukr. J. Phys. Opt. 13 (2012) 82), we have rederived the main phenomenological 
relations describing the changes in optical anisotropy of crystalline disks loaded 
along their diameters. Basing on the analysis of these relations, we have developed 
an improved technique for determining the piezooptic coefficients 44 , 55  and 66  
for the crystals of almost all of the point symmetry groups. The technique is based 
on studying the spatial distributions of optical birefringence and optical indicatrix 
rotation angle induced along the chords and diameters of a crystalline disk 
compressed along its diameter. 
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1. Introduction 
It is well known that piezooptic effect consists in changes of the optical impermeability 

coefficients ijB  (or the refractive indices 2(1/ )ij k kB B n  ) of a material medium, which 

appear under the action of mechanical stresses nl m  . This is described by the 

phenomenological relation 

k km mB    ,     (1) 

where km  denotes a fourth-rank piezooptic tensor [1]. The effect is usually studied when 

uniaxially loading parallelepiped-shaped samples. Unfortunately, this leads to appearance of 
uncontrollable spatially inhomogeneous stresses inside a sample and, as a result, to dramatic 
lowering of the accuracy for the piezooptic coefficients.  

Recently we have demonstrated that application of inhomogeneous 2D stresses, which are 
known in advance, yields in a novel technique for determination of the piezooptic coefficients. 
Moreover, this technique offers a number of advantages, e.g. the piezooptic coefficients can be 
determined with high enough accuracy, when applying torsion stresses [2, 3] or four-point bending 
stresses [4] to crystalline samples. In particular, in our work [5] we have reported a specific 
technique developed for measuring the piezooptic coefficients kk  (k = 4, 5, 6) for the crystals 

that belong to almost all of the point groups of symmetry. It is based on the studies of spatial 
distributions of optical birefringence and optical indicatrix rotation along different diameters of a 
crystalline disk which is compressed along one of its diameter.  

Besides, phenomenological relations have been presented in Ref. [5] that describe the 
induced piezooptic changes occurring in the optical birefringence and the optical indicatrix 
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rotation angle. Unfortunately, these relations have been derived using incorrect underlying 
expressions for the shear stress tensor components 4 , 5  and 6  that appear due to 

compression of the disks. The latter fact has also led to partially incorrect conclusions drawn in 
Ref. [5]. First of all, this is the finding that the piezooptic coefficients kk  can be determined 

when the optical beam is scanned along the disk’s diameters parallel or perpendicular to the 
loading force. In the present work we have rederived the main theoretical relations that describe 
the induced changes in the optical birefringence and the optical indicatrix rotation for the 
crystalline disks loaded along their diameters. We have also verified and improved the main 
conclusions of the work [5]. 

2. General phenomenological relations  
It is known [6, 7] that loading of a disk along its diameter produces a non-uniform spatial 
distribution of mechanical stresses. Let us introduce a coordinate system XYZ associated with the 
eigenvectors of optical impermeability tensor that characterizes a given crystalline material. 
Suppose that  a Z-cut crystalline disk is loaded along its diameter parallel to Y axis. Then the 
loading force has the only component P = P2, while the stress tensor components 1 , 2  and 6  

will be equal to 
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Here d denotes the thickness of the disk and R its radius.  
The mechanical stresses appearing along the diameter parallel to X axis (i.e., in the case of 

Y = 0) and along the diameter parallel to Y axis (X = 0) are described respectively by the relations 
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As a consequence, we have the equality 6  = 0 along the both diameters mentioned above. 

At the same time, the stress tensor components 1 , 2  and 6  remain nonzero along the chords 

which are parallel to the X or Y axes (i.e., when Y or X coordinates are equal to / 2R ). These 
components read as 
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respectively. Similar relations may easily be written for the X- and Y-cuts of the crystalline disk. 
Using all of those formulae, we have rederived the expressions that describe the induced optical 
birefringence and the angle of optical indicatrix rotation for the loaded disks made of crystals of all 
point symmetry groups (see Table 1). 

Using the above equations valid for the crystals of different symmetries, we will analyze 
them and, in this way, find the experimental geometries for which the piezooptic coefficients kk  
can be determined using the crystalline disks loaded along their diameters. 

2.1. Cubic crystals  
Basing on Eqs. (13)–(24) for the optical birefringence and the optical indicatrix rotation angle, one 
can determine the piezooptic coefficient 44  for the cubic crystals in the experimental geometries 

where the shear stress tensor components 4 , 5  and 6  are nonzero. As seen from Eqs. (9) and 
(12), these conditions are satisfied whenever the light beam is scanned along the chords parallel to 
the principal axes. For example, the induced birefringence and the induced optical indicatrix 
rotation are given by Eqs. (17) and (18) if a Z-cut disk made of crystals of the symmetry groups 
432, 43m  and m3m is loaded along its diameter parallel to the Y axis. Employing Eq. (17) and the 
distributions of the induced birefringence measured experimentally along the chords at the height 

/ 2Y R  and / 2X R , one can get the difference of the piezooptic coefficients 11 12   and 

the coefficient 44 . Notice that the coefficient 44  can also be determined from Eq. (18), using 
the experimental dependences of optical indicatrix rotation angle on the coordinates read along the 
directions of chords parallel to the X and Y axes. In addition, similar measurements can be carried 
out for the X- and Y-cuts of crystalline disks. 
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Under the same geometry (i.e., the Z-cut of a crystalline disk and the loading force P2), the relation 
for the induced birefringence 12 ( , )n X Y  for the cubic crystals belonging to the groups 23 and m3 

follows from Eq. (23) respectively under the conditions of Y = 0 and X = 0: 

   3
12 11 21 1 11 12 2

1( ,0) ( ) ( )
2

n X n X X             ,  (63) 

   3
12 11 21 1 11 12 2

1(0, ) ( ) ( )
2

n Y n Y Y             .  (64) 

Here n  denotes the initial (unperturbed) refractive index, and 1 2( ), ( )X X   and 

1 2( ), ( )Y Y   are defined respectively by Eqs. (5) and (6). Then the induced birefringences along 

the chords / 2Y R  and / 2X R  are as follows:  

    23 2 2
12 11 21 1 11 12 2 44 6

1( , / 2) ( ) ( ) 4 ( )
2
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and 

    23 2 2
12 11 21 1 11 12 2 44 6
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2
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Here 1 2 6( ), ( ), ( ) X X X    and 1 2 6( ), ( ), ( )Y Y Y    are given respectively by Eqs. (7)–(9) 

and Eqs. (10)–(12).  
Using these formulae, one can obtain the differences 11 21   and 11 12   of the 

piezooptic coefficients, as well as the piezooptic coefficient 44 . Notice that similar 

measurements can be performed in the other geometries, e.g. when the light propagates along the 
X and Y directions and the only loading component is P3. Hence, the 44  coefficient can indeed be 

easily measured for the cubic crystals. This agrees well with the conclusion drawn in Ref. [5], 
though the relevant practical procedures differ from those suggested in that work. Namely, for this 
aim one has to derive experimentally spatial distributions of the optical birefringence and the angle 
of optical indicatrix rotation along the chords. 

2.2. Hexagonal and tetragonal crystals 
For all of hexagonal and tetragonal crystals, Eqs. (27) and (28) (see Table 1) describe the 
birefringence and the optical indicatrix rotation angle induced by the force component P3 in the Y-
cut disks under the condition / 2X R  (i.e., along the chords). Taking into account that the 
natural birefringence is relatively small (i.e., o en n n ), one can simplify these equations to the 

following form: 
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Let us insert the relation appearing in the square brackets of Eq. (67) into Eq. (68) and take into 
account that the mechanical stress component 5 ( )Z  is given by the formula 
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Then the coefficient 44  can be obtained. Now we consider the disks that have their faces 

perpendicular to the Z axis and are made of crystals belonging to the hexagonal symmetry groups 
622, 6mm, 6m2  and 6/mmm. The spatial XY distribution of the induced birefringence known 
from experiments enables determining the coefficient 66  with the aid of Eq. (29). 

Now we proceed to the spatial birefringence distributions induced along the chords / 2Y R  
and / 2X R  in the Z-cut disks of crystals that belong to the point groups 6, 6  and 6/m and are 
loaded by the force P2. The appropriate relations may be derived using Eq. (31) and taking 
Eqs. (7)–(12) into account. Then solving the system of equations for 12 ( , / 2)n X R  and 

12 ( / 2, )n R Y  facilitates experimental determination of the piezooptic coefficients 62  and 66 . 

This is also true for the point symmetries 422, 4mm, 42m  and 4/mmm, for which the induced 
birefringence is defined by Eq. (33). Then the coefficients 11 12   and 66  can be also 

determined. 
For the crystals of tetragonal groups 4, 4  and 4/m, one can easily derive the birefringence 

induced for the case of the Z-cut crystalline disk and the P2 force. Considering the experimental 
distributions of the induced birefringence along the four directions ( 0Y  , 0X  , / 2Y R  and 

/ 2X R ) and solving the system of Eqs. (35) for these directions (i.e., the relations for 

12 ( ,0)n X , 12 (0, )n Y , 12 ( , / 2)n X R  and 12 ( / 2, )n R Y ), one can find the coefficients 16 , 

61 , 66  and the combination 11 12  . 

Hence, one can determine the coefficient 44  for the crystals of hexagonal and tetragonal 

systems after spatial distributions of the induced birefringence and the angle of optical indicatrix 
rotation have been obtained along the chords but not the diameters as suggested in Ref. [5]. On the 
other hand, the coefficient 66  can be determined using the experimental spatial distributions of 

the optical indicatrix parameters obtained along the chords for the symmetry groups 422, 4mm, 
42m , 4/mmm, 4, 4 , 4/m, 6, 6  and 6/m, and along the diameters for the groups 622, 6mm, 6m2  
and 6/mmm. Some additional coefficients and their combinations can be determined, too. 

2.3. Trigonal crystals 
As follows from Eqs. (39) and (40), the coefficient 44  for the crystals of trigonal groups 32, 3m 

and 3m  becomes measurable in the same way as for the case of hexagonal or tetragonal crystals. 
Here the birefringence and the optical indicatrix rotation induced by the force P3 in the Y-cut disks 
under the condition / 2X R  are described by Eqs. (39) and (40), which are identical respectively 
to Eqs. (27) and (28) (see Table 1). In addition, one can determine the coefficient 66  from 

Eq. (41) and experimental XY-distribution of the birefringence induced along the disk diameters. 
Then the Z-cut crystalline disk should be employed and the force P2 should be applied. 

Let us consider the crystals of the trigonal groups 3 and 3 . Here the 44  coefficient can be 

measured in the geometry given by k Y  and P = P3. The birefringence and the optical indicatrix 

rotation angle induced by the force P3 in the Y-cut disk are described by Eqs. (45) and (46) (see 
Table 1). Considering that o en n n , we simplify the corresponding equations yielding in 
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when we have / 2Z R . Here the mechanical stress tensor component 5 ( )Z  is given by 

Eq. (69), whereas the components 1( )Z , 1( )X  and 5 ( )X  are defined as 
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Inserting the expressions appearing in the square brackets of Eqs. (70) and (72) into the 
denominators of respectively Eqs. (71) and (73), and solving the system of Eqs. (71) and (73), one 
can obtain the coefficients 44  and 52 . 

Thus, the coefficient 66  for the symmetry groups 32, 3m and 3m  can be found while 

measuring spatial distributions of the optical indicatrix parameters along the disk diameters. It is 
this statement that has just been made in Ref. [5]. However, the coefficient 44  for the trigonal 

crystals has to be derived using the same spatial distributions measured along the chords. The 
latter is also true of the 66  coefficient for the symmetry groups 3 and 3 . 

2.4. Orthorhombic, monoclinic and triclinic crystals 
Now let us analyze the crystals of orthorhombic and monoclinic symmetries. Here the coefficients 

44  and 55  can easily be determined. As an example, we consider a Y-cut disk and assume that 

1 3n n n  under the condition / 2X R . The birefringence increment and the angle of optical 

indicatrix rotation are readily obtained from Eqs. (51) and (52): 
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The denominator of Eq. (78) is equal to the expression appearing in the square brackets of 
Eq. (77). Hence, solving the system of these equations would result in analytical expression of the 
coefficient 55 . The coefficient 44  for the orthorhombic and monoclinic groups and the 
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coefficient 66  for the orthorhombic groups can be evaluated using respectively X- and Z-cut 

disks (i.e., the systems of Eqs. (49) and (50) or Eqs. (53) and (54), respectively) and employing the 
same experimental procedures. As follows from Eqs. (55) and (56), it is impossible to evaluate the 

66  coefficient itself for the case of monoclinic crystals. Finally, the coefficients 44 , 55  and 

66  for the triclinic crystals cannot be determined separately on the basis of our 

phenomenological relations (see Table 1). 

3. Conclusion 
In the present work we have rederived the main phenomenological relations that describe the 
changes occurring in the optical birefringence and the angle of optical indicatrix rotation of the 
crystalline disks loaded along their diameters. The relations are derived for all of the point 
symmetry groups. On this basis we have found that the piezooptic coefficients kk  (k = 4, 5, 6) 

can be successfully determined for the crystals of almost all of the point groups. The 
corresponding technique is based on experimental studies of the optical anisotropy parameters 
induced along the chords of a crystalline disk compressed along its diameter. Only the crystals 
belonging to the triclinic system are problematic in this respect. 
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Анотація. З метою виправлення помилок, присутніх у нашій попередній роботі (Savaryn V. 
et al. Ukr. J. Phys. Opt. 13 (2012) 82), ми повторно одержали основні феноменологічні 
співвідношення, що описують зміну оптичної анізотропії стиснутого вздовж діаметра 
кристалічного диска. На основі аналізу цих співвідношень представлено вдосконалений 
метод визначення п’єзооптичних коефіцієнтів 44 , 55  і 66  для кристалів майже всіх 
груп симетрії. Метод базується на дослідженні просторового розподілу індукованих 
оптичного двозаломлення і кута повороту оптичної індикатриси вздовж хорд і діаметрів 
кристалічного диска, стиснутого вздовж його діаметра. 
 


