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Abstract. Autowaves of scattering appear under excitation of nonlinear 3LiNbO : Fe  
crystals by a focused laser radiation, manifesting themselves as moving light-ring 
structures. A periodic behaviour of generation of the rings could be related to com-
petition of refractive index gratings of the two types, reflecting and transmission 
ones. A chaotic regime arises if the control parameters, the pump intensity and the 
impurity concentration, become less than a threshold. 
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1. Introduction and experimental data 
A phenomenon of autowave light scattering (AWLS) has been experimentally revealed in the 
study  [1]. Later on, the effect has been investigated in Refs. [2, 3]. The AWLS appears as a back-
ward scattering with a conical indicatrix in the experiments with steady-state illumination of 

3LiNbO : Fe  crystals by a focused laser beam propagating along the direction opposite to the optic 

axis z (i.e., along –z – see Fig. 1). Contrary to some other kinds of photorefractive light scattering, 
the effect is considerably non-stationary. The AWLS intensity (quasi-)periodically oscillates in 
time during photoexcitation of a crystal by a steady-state laser radiation, and the temporal modula-
tion depth can approach 100%. While the oscillations evolve, the spatial distribution of the scatter-
ing intensity changes in the following sequence: (a) the scattering appears near the surface of a 
cone with a fixed initial angle 0   0, (b) the cone widens, and (c) the scattering radiation disap-

pears. Then the process repeats (quasi-)periodically. 
We begin with a brief report on our experimental data on the above effect, develop a relevant 

theory and, finally, give a critical comparison of the theory and the experimental results. A He-Cd 
laser (the radiation wavelength λ = 0.44 µm and the power PL = 20 mW) has been used in our ex-
periments. The radiation is focused by a lens with the focal length F = 10 cm into the region close 
to the front surface of a z-cut of 3LiNbO : Fe  crystal. The thickness of the crystal is   = 0.3 cm 

and the impurity concentration nd = 0.03 weight %. The AWLS is observed on the screen (see 
Fig. 1a) as bright rings forming the scattering cones, with the initial angle 0  being equal to 1.5o 

and the angle at which the scattering disappears amounting to dis  ≈ 3.5o (Fig. 1b). The cone angle 

widens with increasing concentration nd so that the values 0  ≈ 3.5o and dis  ≈ 8o are reached at 
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nd = 0.07 weight %. The radiation power concentrated inside the scattering rings is as high as 
~ 80% of the pump power. The oscillation period (1÷10 s in our experiments) depends on the 
pump parameters, such as the power and the conditions of focusing. Notice that intentional in-
crease in the intensity of light reflected from the output surface of the sample by a supplementary 
mirror causes increasing oscillation intensity. 

 

 (a)  (b) 

Fig. 1. Scheme of our experiments on exciting the AWLS (a) and a picture of the scattering ring (b). 

 

Fig. 2. Temporal dependence of the AWLS signal. 

An example of temporal dependences of the AWLS is shown in Fig. 2. The scattering light 
intensity has been measured by a photodetector (photodiode) placed into the scattering ring. The 
AWLS is not observed when the crystal is excited along the +z direction. The shape of AWLS 
indicatrix follows that of the exciting beam. The indicatrix represents a conical surface only when 
a cylindrical laser-pump beam is focused by a spherical lens. In the case of cultriform pumping, 
the scattering indicatrix represents two parallel planes moving away from each other. 

It should be noted that the regime of AWLS could only be implemented when the pump in-
tensity exceeds some threshold value, 0

L LI I . In our experiments the threshold intensity is 
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0 240 W/cmLI   at 0.44 μm  . For LI  lower than the threshold 0
LI , a chaotic regime is detected, 

i.e. a set of chaotically flickering spots of irregular shapes is observed. The threshold intensity 
value depends on the pump wavelength L  and increases when L  shifts towards the ‘red’ spec-

tral region. 
A periodic appearance of the scattering rings could be associated with competition of the 

longitudinal and transverse charge-transfer mechanisms in photorefractive crystals. The latter re-
sults in dynamic instability of a reflecting grating, which is lost provided that a transmission grat-
ing with sufficiently large amplitudes appears. 

2. Theory of AWLS  
A concept of running waves of impurity-centre overcharge [4] may be used to explain the AWLS 
effect. The instabilities can appear in a nonlinear system ‘photorefractive crystal + laser radiation’. 
In their turn, these can lead to formation of different transverse structures [5-8]. Spatial-temporal 
instabilities in the systems of this kind have been considered in Refs. [9, 10]. The theory presented 
below is based on these results. 

Let us consider a nonlinear photorefractive crystal with no inversion centre. The crystal is il-
luminated by a stationary laser beam corresponding to a TEM00 mode. We use the following ge-
ometry for our calculations: the central wave vector of the pump beam is directed along the z axis 
(the latter can be parallel or antiparallel to the optic axis z of the crystal) and the pump polarization 

1e  lies in the plane xy, the origin being placed at the pump-beam centre on the front side of crystal 

(see Fig. 1). The symmetry group of the crystal is 3m. The crystal is taken to be infinite in the 
transverse directions (i.e., in the xy plane) and to have the thickness  . 

The laser field inside the crystal will be presented as follows: 

   1 0 1 0( , ) exp ( , ) exp . .t i k z t t i k z t c c             E A r A r ,  (1) 

with 0 0k c  . The amplitudes 1A  are considered to be smooth functions that depend on the 

coordinates and time. Using the technique [10], we separate a part ( )f
sE r  slowly varying along z 

and an oscillating dynamic part in the structure of internal electric field fE  in the crystal: 

 0( , ) ( , ) exp 2 . .f f f
s t t ik z c c  E E r U r     (2) 

The amplitudes ( , )f
s tE r  and ( , )f tU r  are also taken to be smooth functions that depend on the 

coordinates and time. The second summand in Eq. (2) corresponds to taking reflective holograms 
into account. 

The terms corresponding to electrooptic change of the refractive index f
EO   E   (with 

  being the electrooptic tensor) and the dielectric permittivity fluctuations  r
  (e.g., those 

originated from crystal growth) can be separated in the dielectric permittivity 
 0 ( , )EO t      r r     at the excitation frequency  . The electrooptic modulation may be 

described as follows: 0 2 0( , ) ( , ) ( , ) exp[2 ] . .EO t t t ik z c c       r r r    Here we distinguish the 

part 2
f   U   linked with formation of the system of reflective holographic gratings (with the 

wave vector 02k ) and the part 0
f
S   E   imposed by spatial charge redistribution on the scales 

01/Sl k  . By analogy, the seeds of different types of gratings 
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     2 0exp[2 ] . .R ik z c c    r r r    can also be separated in the expansion   r . The 

other scattering components will be neglected. In our notation, the reduced equations for the am-
plitudes of the direct ( 1A ) and backward ( 1A ) waves take the form [4] 

  

  

01
1 0 1 2 2 1

0 0

* *01
1 0 1 2 2 1

0 0

,
2 2

.
2 2

ki i
z k

ki i
z k

  


  


 


  

                


               

A A A r A

A A A r A

  

  
 (3) 

Notice that the absorption of the optical waves is neglected in what follows. 
In accordance with the experimental data [1, 3], assume that  1 1 1 ,A t A e r  so that the 

polarization of the light waves retains during scattering. Then the scalar functions can be intro-
duced: 

 2 1 1
f   e U e , 1 2 1  e e ,  0 1 1

f
s   e E e .  (4) 

The amplitude 2  of dielectric-permittivity modulation imposed by the linear electrooptic effect 

can be divided into two parts: 

2 ||       , 
|| 1 1 ,

1 1 , .

f
i j i j z z

f
i j i j

e e U

e e U

 

   

 

 

,    (5) 

which is consistent with consideration of influence of both the longitudinal ( f
zU ) and transverse 

( fU ) components of the internal field. 

The internal electric field fE  may be found from the system of equations [11–13]: 

   div 4f f
d e ae n n n    E ,     (6) 

 0 1 1div div :
4

f f
f

e e d de n eD n I n n
t


 


              

EE e e
  ,   (7) 

   d
R e d p d d T d d

n n n I n n n n
t

  


  
     


.   (8) 

Here f  denotes the low-frequency dielectric permittivity, en  the free-electron concentration, 

dn , dn  and an  are concentrations of donors, ionized donors (traps) and acceptors, respectively, 

R , p  and T  the coefficients of electron capture by the trap, photoionization and thermaliza-

tion, respectively,  2 2
1 1 1 1 0exp 2 . .I A A A A ik z c c

      means the laser radiation intensity, e  

the absolute value of electron charge,   the mobility, 0D  the diffusion coefficient, and 


 the 

photovoltaic tensor. 
Further on, the acceptor levels are assumed to be located deeply enough and fully filled, and 

the donor traps to be filled fast enough (when compared to the period of autowave formation proc-
ess). Similarly to Eq. (2), spatial-temporal distributions of the concentrations may be represented 
as follows: 
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 
 

 

0

0
0

0

( , ) ( , ) exp 2 . .,

( , ) ( , ) exp 2 . .,

( ) exp 2 . .,

s
e e e

d ds d

d d d

n n t n t ik z c c

n n t n t ik z c c

n n n ik z c c

  

  

  

  

r r

r r

r



    (9) 

i.e. the spatial harmonics ~ 02k  are extracted from the spectra of concentration variations. The 

distribution functions of statistic fluctuations of the donor centre concentration ( )dn r  will be 

considered as small ( 0
d dn n  ). We will take into consideration that the statistic dielectric per-

mittivity f  and the conductivity   are described by the tensors with nonzero diagonal compo-

nents: ff f
xx yy    , ff

zz  , f f
zz z  , and ,f

xx yy zz       . 

Using the explicit form of convolution of the photovoltaic and electrooptic tensors given by 

Eqs. (5), with the pump polarization  1 ,ix iye ee  for the crystals of the symmetry 3m, we have 

derived the equations for ||  and  , issuing from the vector equation for the internal field 

components (see Ref. [10]). As a consequence, we have arrived at the general system of equations, 
which describes the interaction of light waves with the photorefractive medium and involves the 
longitudinal and transverse components of the internal electric field: 

 

 

1 0 1 || 1

1 0 1 || 1

,

,

A ip A i W W W A
z

A ip A i W W W A
z





  

  
   


    




    


   (10) 

   

1 1 ||

|| || || || || 1 1 ||

( ),

1 ( ),

n

n

W W Q A A iM W R
t

W W iM Q iD A A R
t






      





    




     


r

r
  (11) 

where 0 01/ 2p k . The main system of Eqs. (10) and (11) must be supplemented by the initial and 

boundary conditions: 
     1 0 10, , , , , , , , 0A z x y t A x y A z x y t    ,  (12) 

   || , 0 , 0 0W t W t   r r .    (13) 

The following notation is used in Eqs. (10) and (11): 

0 0 0
|| ||( , ) ( , ) , ( , ) ( , ) , ( ) ( )

2 2 2
k k kW t t W t t W        r r r r r r .  (14) 

It is worthwhile that the relaxation times || / 4f f
z zz    and / 4f     (i) depend on the 

pump intensity and (ii) can differ considerably from each other because of photoconductive anisot-
ropy. 

The following coupling parameters [10] are used in the system of Eqs. (11): 

31 1322 22
0 || 0, ,f f

zz
Q B Q B  






  13 02
(2 )f

zz R ds T

eDD
n


  


, (15) 

3122 22
1 || 1

13
, f

zz
M B M B 

  



  .     (16) 
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Here the notation 

 00 0
0 1

2
,

2 22 2

f
R ds T z R ds s

d ds
R ds p s T R ds p s T

k n k e n IB n n B
en I n I

  
     

 


 

        
         

. 

is introduced. The volume (stationary) inhomogeneities of the impurity distribution induce a spa-
tial modulation of the internal fields and the refractive index of the medium. They serve as 
Rayleigh (seed) scattering sources distributed over the sample volume. The influence of these in-
homogeneities on the scattering processes is described by the summands ( )nR r  and || ( )nR r  ap-

pearing in Eq. (20). Their values are defined by the fluctuations of spatial distribution of the impu-
rity centres (see Ref. [10]). 

In what follows, the scattering intensity is considered small as compared to the pump-wave 
intensity, i.e. we have 1 1A A  . In a zero-order approximation, the field 1( )A r  satisfies the 
homogeneous equation 

1
0 1 0A ip A

z 


  


.    (17) 

If pumping is implemented by a focused Gaussian beam, the solution of Eq. (17) inside the beam-
waist region acquires the form [14] 

 
2 2

1 0 2
0

, , 0 exp
2

x yA x y z I z


 
    

  
,   (18) 

where 0  is the Gaussian beam radius. Here the origin of coordinates is placed into the pump-

beam centre on the front side of the crystal ( 0z  ). 
To solve the problem, we use Fourier transform over the transverse coordinates  ,x y  

and Laplace transform over the longitudinal coordinate z z   . The system of Eqs. (11) lin-

earized for the images ||, ( , , )W s t q  under the condition 1 1A A   becomes as  follows: 

     

 

||
|| || || || 0 || 0 ||

|| 0 || 0

1 ( , )

( , )

z

z

W
iM W i Q iD I W W iI R s

t
W W iQ W W I iM W iI R s

t

 

 




     

 
       

       

q

q


   


    

, (19a) 

|| ( , , 0) 0, ( , , 0) 0W s t W s t   q q  ,    (19b) 
where the notation  

 ||, ||, 0 ||, ||,( , ) ( , ) ( , ) ( , ),n
zR s i R s I Q iD q s W s       q q q     (20a) 

2
0 ||( , ) ( / 2 ) , ( , 0)z q s i q k s D D D         (20b) 

is used. Solving the system of inhomogeneous linear differential Eqs. (19), one obtains  

   

   

1 2 2 2 1 1
|| 0 1 1 2

1 2 1 2

1 2 2 2 1 1
0 2 1 1 2 2
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 
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 
   
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  
     

  
     

q

q




  (21) 

with 
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0

0
( , ) , ( 1, 2)

1
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 
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      
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q

q

 

 
 (22b) 

The parameters ( , )m q s  are the roots of the master equation  

det ( , , ) 0H q s  


,    (23) 
where 

   || || || 0 || 0

0 0

1
( , , )

1
z z

z z

iM iQ D I iQ D I
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iQ I iM iQ I

   


      

     
 
    


.   (24) 

3. Conditions for the appearance of AWLS  
The roots of the master equation may be found by solving Eqs. (23) and (24): 

2
1 1

1,2 2
( , ) ( , )( , ) ( , )
2 4

h q s h q sq s h q s     ,    (25) 

where  
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 (26) 

The absolute instability threshold of the system of Eqs. (19) corresponds to the condition 
   1 2Re ( , ) Re ( , ) 0q s q s   . This can be reached when  

       2
1

1 2 2
Im ( , )

Re ( , ) 0, Im ( , ) 0, Re ( , ) 0
4

h q s
h q s h q s h q s    .   (27) 

In this case, a Hopf bifurcation appears in the system. Besides, the roots 1,2 1,2i    are purely 

imaginary and so autooscillations with the frequencies 1,2  appear: 

      1/ 22
1 1

1,2 2

Im Im
Re

2 4
h h

h
 

     
  

.    (28) 

The conditions given by Eq. (27) may be transformed into a system of two linear equations with 
respect to Re ( , )z s q  and Im ( , )z s q . Using Eq. (20b), one can find the values 0s s  and 

0q q  satisfying Eq. (27). 

The estimations performed above demonstrate that the relations 

|| || ||, ,D Q Q Q         (29) 

hold true for the 3LiNbO :Fe  crystals. Besides, it follows from Eqs. (27) and (28) that the AWLS 

regime is characterized by the following parameters: 
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(a) the autooscillation frequency 1 

1 2
|| ||

1 DQ

Q
  ;     (30) 

(b) the magnitude of transverse part of the wave vector of dynamic holographic grating 0q q 
 , 

with 

0 0 0 || ||2 , ( 0)q k I Q Q   ;    (31) 

(c) the coefficient of spatial gain  

0 0 , ( 0)s I D D   .     (32) 

It is obvious that the frequency depends linearly on the pump ( 0~ I ) in the region of suffi-

ciently high intensities, since || || 01/ ~ ~ ~s
en I  . However, the generation frequency becomes 

saturated ( max ) with further intensity increase, when all of the donors are ionized and in-

creasing sI  does not change the charge state of the crystal. The q  vector is defined as a real one. 

Besides, it follows from Eq. (31) that the condition || 0Q   is necessary for observation of the 

AWLS. The latter restricts a class of materials where the optical autowaves can exist. 
To amplify the backward wave, it is necessary that the condition 0exp[ ] 1s   remain valid. 

In accordance with Eq. (32), this is possible only when 0D  , in compliance with a definite direc-
tion of the pump-beam propagation with respect to the polar axis C. The reason is that the coeffi-
cient 0 13~D D   changes its sign whenever the sample is rotated by 180 deg (i.e., under the 

change z z  ). This corresponds to a bleaching regime, according to the classification given in 
Ref. [11]. 

Notice that the condition given by Eq. (31) defines only the magnitude of transverse part of 
the wave vector q  of the grating, but not its direction. Therefore the pattern of the generation field 

should have axial symmetry with respect to the pump-beam centre. 
Let us now consider the photoinduced bleaching regime ( 00; exp[ ] 1D s l  ). Using the 

above results, one can obtain the optical-field amplitude of the backward wave appearing on the 
front side of the sample ( 0z  ): 

   
     0

1 0 02
0 0 0

exp
, ,0, exp , ,

2

s
A x y t i I d i W s t

s iq k

     


 q q r q

  . (33) 

In Eq. (33), integration is performed over all of q  vectors satisfying the condition 0qq  (see 

Eq. (31)). The temporal dependence of electrooptic modulation of the refractive index can be 
found from Eqs. (21), (28) and (30): 

1 2 0 2
0 0 1

1 0 2 0

( ) ( ) ( )
( , , ) 2 exp sin [1 ( )]

( ) ( ) 2 2
R q RW s t I i t t q

q q



 

             

q qq ,  (34) 

where the functions 1,2 ( )R q  and 1,2 0( )q  are specified by Eqs. (22). It is reasonable to assume 

that, for the samples with quasi-homogeneous distributions of photoactive impurities, the fluctua-
tions ( )dn r  manifest the following properties: 

                                                 
1 The second solution 2 0   is not associated with the AWLS effect. 
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2
1,2 1,2 1,2 1,2( ) 0, ( ) ( ) ~ ( ) ( )R R R R   q q q q q q

    .   (35) 

Hereafter the angular brackets denote averaging over the random scattering sources. 
The backward-wave field 1E  on the screen in the plane Sz L   may be found from 

Eq. (33) in the paraxial approximation, using the Fresnel–Kirchhoff formula [15]. In accordance 

with Eq. (35), statistical averaging of the parameter 2
1E  is necessary to find the backward-wave 

intensity. When 2
0 0/L k   and L   , the angular dependence of the backward AWLS indica-

trix is described by the relation 

  
 22

0
1 2

0

exp 2
( , ) 1 cos (0 1)

1
J t t

 
 

  


        
 

,    (36) 

where 2
1 1 0 0( , ) ( , ) ,J t I t I R   0 0 0/ 1q k    and 0 0k   . One can see that the backward 

scattering is periodic in time (the frequency ) and has a conical spatial structure (the central an-
gle 0 ). 

4. Comparison with the experiment 
Now let us compare the results of our theory and AWLS experiments. We remind that the samples 
of 3LiNbO  with the Fe concentrations (0.020.07) weight % were observed in our study, and the 

optimal condition for the AWLS effect was 0.03 weight %. The maximum of the scattering cone 
corresponded to the angle max 0  . It is seen from Eqs. (14) and (31) that 

 1/ 2 1/ 2
0 ||~ ~ d dsq Q n n    . Bearing in mind only the generation-angle dependence on the con-

centration and supposing for rough estimation that ds an n  , one finds 

 1/ 2
0 f d an n   ,     (37) 

where f  is a parameter of the theory. It is worth noticing that the photoactive-impurity concen-

tration dn  represents one of the control parameters. In particular, the autowaves disappear at 

d an n . 

 

Fig. 3. Dependence of autowave fre-
quency Ω on the pump intensity I0. Solid 
curve corresponds to theoretical calcula-
tions and dots to experimental data 
(nd = 0.03 weight %, λ = 0.44 µm and 
  = 0.3 cm – see the text). The inten-
sity region of the chaotic mode is 
shaded 
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The theoretical and experimental dependences of the autowave frequency Ω on the pump-
wave intensity I0 are represented in Fig. 3. In compliance with the experimental data, we have a 
linear dependence for sufficiently high pump intensities ( 0p TI  ): 

0 0( ) fI C I  ,     (38) 

where fC  is proportional to the constant of photoconductivity. The pump-intensity threshold may 

be evaluated from the condition 0 1s  . Then the threshold intensity (see Eq. (32)) reads as 

1
CI

D
 


 ( 0)D  .     (39) 

One can see that the pump intensity is also a control parameter. Moreover, the AWLS becomes 
possible only under the condition 0 CI I . 

The spatial and temporal characteristics of periodic optical autowaves calculated theoretically 
above the threshold are in good agreement with the experimental data obtained for the 

3LiNbO : Fe  crystals. It should be stressed that the chaotic mode (i.e., pulsations of irregular spots) 

needs no competition of the transmitting and reflecting gratings and so can be reached below the 
threshold. This has been successfully demonstrated in Refs. [16, 17]. 

Basing on the theory and experiments reported in the present work, one can draw the follow-
ing conclusions: 

(1) To describe the effect of optical autowave generation, both the longitudinal and transverse 
photovoltaic/diffusive currents should be taken into account. Under the conditions discussed 
above, the transverse currents destroy a stationary charge redistribution created by the longitudinal 
currents, resulting in the appearance of cyclic (in time) charge transfer. 

(2) The autowave light scattering represents a threshold effect: periodic in time, conically 
shaped pattern of radiation appears in the photorefractive crystals when the control parameters 
such as the pump intensity and the photoactive impurity concentration exceed the appropriate criti-
cal values. 
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Анотація. Автохвилі розсіяння з’являються при збудженні нелінійних кристалів 
3LiNbO : Fe  сфокусованим лазерним випромінюванням і мають вигляд рухомих світлових 

кільцевих структур. Періодичну поведінку генерації кілець можна пов’язувати з конкурен-
цією ґраток показників заломлення двох типів – відбивного і пропускного. Якщо значення 
контрольних параметрів (інтенсивності нагнітання та концентрації домішок) нижчі за 
порогові, то виникає хаотичний режим розсіяння автохвиль. 
 


