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Abstract. We have checked the accuracy and reliability of an experimental 
technique suggested earlier for determining piezooptic coefficients. It is based  
on inducing a predefined 2D distribution of mechanical stresses in a transparent 
material disk compressed along its diameter. We have shown that the  
technique enables to measure the piezoopic constants with high enough accuracy. 
The sources of experimental errors are thoroughly analyzed and eliminated.  
The experimental procedures are presented in detail for the case of measurements  
of the parameter 66 = 11 – 12 for the crystalline disk of lithium niobate. Our results 
conform well to the literature data and evidence high reliability and precision of  
the technique. 
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1. Introduction 
Nowadays optical materials are used in a wide class of applications like acoustooptic and 
electrooptic devices, photoelasticity, stress tensor field tomography, remote optical stress sensors, 
photoelastic modulators of light polarization, etc. Comprehensive and consistent characterization 
of these materials requires knowledge of photoelastic and piezooptic properties [1–8]. It is known 
that a piezooptic effect consists in changes of refractive indices of an optical material in response 
to mechanical stresses. It may be written in terms of a tensor relation initially suggested by 
F. Pockels [9, 10]: 
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where the Voigt notation is used. In Eq. (1), B denotes the increment of a specific component of 
optical impermeability tensor, n the relevant refractive index,  the stress tensor components, 
and  the components of a fourth-rank tensor of piezooptic coefficients (POCs). 

Usually the POCs  are measured with relatively high errors. The latter are mainly caused 
by a non-uniform 3D spatial distribution of the stress components generated in real parallelepiped-
shaped samples under a uniaxial pressure [11], whereas a spatially uniform stressed state is almost 
forcedly assumed by the common theoretical models. Recently, a number of measuring techniques 
have been developed by our scientific group to improve the accuracy of POC determination. They 
make use of the loading methods which give rise to non-uniform, though known in advance, stress 



Refined measurements 

Ukr. J. Phys. Opt. 2014, Volume 15, Issue 1 31 

distributions in a sample. These are a measuring technique based on crystal torsion [12–14], a 
combination of digital imaging laser interferometry with a classical four-point bending method 
[15–17], and a technique based on compressing of crystalline disks along their diameters [18].  

The last of the above methods has earlier been tested on the example of crystalline disk made 
of well-known single crystals of lithium niobate (LiNbO3, abbreviated hereafter as LN). LN is  
an optically uniaxial crystal widely used as a nonlinear optical material. Our study [18]  
has resulted in the magnitude of the POC |66| = |11 – 12| obtained experimentally using the 
imaging polarimetry. In the units of Brewster (1B = 10–12 m2/N) it is equal to |66| = 0.200.01 B. 
This parameter is smaller than that reported earlier in the work of Mytsyk et al. [19]  
(66 = 11 – 12 = –0.47 B) where an interferometric technique and a common loading scheme have 
been employed. Of course, this evident discrepancy between the POC values may be explained by 
a higher experimental error reported by the authors of Ref. [19] (~ 15%), as well as some 
peculiarities of their experimental procedures concerned with accounting for the Poisson strain in a 
sample and piezoelectric contribution into the optical retardation. However, some time later a full 
POC matrix for the LN has been measured with the method based on the four-point bending [17]. 
According to that study performed also by our scientific group, the POC under interest is equal to 
66 = 11 – 12 = –0.5730.079 B.  

Hence, it is evident that the POC 66 of the LN measured in the work [18] for a compressed 
LN disk deviates significantly from the results derived with the other experimental techniques, and 
the reasons seem to be not so simple. Therefore we have decided to reinvestigate the above POC 
under the same experimental conditions as in the study [18], in particular the same orientation of 
the single crystal, the loading scheme and the configuration of our imaging polarimeter. 

2. Experimental technique 

The experimental technique used here has been described in detail in our previous works (see [18]). 
Therefore, below we will illustrate only the key points of the method for the convenience of 
readers. It is known [20] that loading of a thin disk along its diameter forms a 2D stressed state. 
When the disk is cut perpendicular to the principal axis Z of the crystal and the loading force P is 
applied along Y axis, the three components of the stress tensor ̂  appear. They are spatially 
distributed in the XY plane in the following manner [20]: 
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Here d is the thickness of the disk and R its radius. Now consider the particular case of LN. The 
POC tensor for the point group 3m, to which LN belongs, may be represented as 



Savaryn V. et al 

Ukr. J. Phys. Opt. 2014, Volume 15, Issue 1 32 

 

11 12 13 14

12 11 13 14

31 31 33

41 41 44

44 41

14 11 12

0 0
0 0

0 0 0
0 0 0

0 0 0 0 2
0 0 0 0

qm

   
   
  


  

 
  

 
  
 

  
 

 
   

.   (3) 

When the probing light propagates along the Z axis, the optical birefringence appearing 
inside the compressed disk is determined as [18] 
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( on  – is the ordinary refractive index) while the optical retardation   accessible for experimental 
measurements looks as 
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Since, according to Eqs. (2), the stress tensor components  included in Eq. (5) depend on the 
coordinates X and Y, we arrive at a 2D spatial distribution of the optical retardation . Notice that a 
spatial map of the   parameter can be readily measured by means of our imaging polarimeter. 
Therefore the analysis of experimental 2D spatial distribution of   should give us the magnitude 
of the POC difference (11 – 12) which is equal to 66 in the case of LN (see Eq. (3)). 

Examination of Eq. (2c) leads to conclusion that the stress tensor component  vanishes 
whenever (i) X = 0 or (ii) Y = 0. The first condition corresponds to the points located on the disk 
diameter along which the loading force acts, whereas the second corresponds to the diameter 
perpendicular to the applied force. Eq. (5) is simplified for those diameters to 
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If we have  = 0, the angle 3 of the optical indicatrix rotation around the Z axis is also equal to 
zero. The latter fact is in accord with the relation [18] 
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thus implying that, under compression of the disk, the principal axes of the optical indicatrix 
should not rotate for the two diameters mentioned above.  

Now let us consider an experimental geometry called as a ‘loading’ diameter and defined by 
the equality X = 0. The retardation   along this diameter is determined as [18] 
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Finally, the dependence of the retardation  on the X coordinate for a geometry called as a 
‘perpendicular’ diameter (Y = 0) reads as (see [18]) 
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It is obvious that the POC 66 can be easily determined from fitting of experimental dependences 
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of the retardation  on the appropriate coordinates taken along the ‘loading’ and ‘perpendicular’ 
diameters, and the fitting functions are defined respectively by Eq. (8) and Eq. (9). 

We have used an imaging polarimeter of which setup is described in Ref. [21]. The 
polarimeter is built according to a standard PCSA (polarizer–compensator–sample–analyzer) 
scheme. In the particular configuration used in the present work, we have made the probing beam 
circularly polarized, thus making the measuring procedure insensitive to orientation of the optical 
indicatrix inside the sample. In general, the polarization of light passing through the sample 
becomes elliptic, with the ellipticity defined by the retardation and the azimuth of long axis of 
ellipse, determined by the orientation of the optical indicatrix. To analyze the polarization state of 
the light emergent from the sample, the azimuth of the analyzer is scanned and a corresponding set 
of images is obtained. Then fitting of the azimuthal dependences of the intensity recorded by a 
CCD camera is performed for each pixel of the sample image. One can thus construct 2D maps of 
the optical anisotropy parameters of the sample, i.e. the optical retardation (the phase difference) 
and the optical indicatrix orientation. 

3. Experimental results 
A sample in the shape of a disk was made from the Z cut of LN, with the diameter of 13.74 mm 
and the thickness of 2.32 mm (see Fig. 1). The loading force was directed parallel to the Y axis (i.e., 
vertically).  

 

Fig. 1. Appearance of LN sample in the field of view of 
our polarimeter. Fringes are caused by multiple light 
reflections from sample faces and indicate to a small 
deviation from their parallelism. 

 

To provide a circular polarization of the probing beam, initially we aligned the fast axis of 
the compensator parallel to the transmission axis of the polarizer. This azimuth of the compensator 

is denoted as C0. Then the compensator was rotated to the angular orientation C1 = C0 – 45. 

Maps of the optical retardation and the orientation of indicatrix of the sample were obtained 
experimentally for the loading forces equal to 0, 16.30 and 57.06 N. Examples of the experimental 
maps are presented in Fig. 2. In general, they agree well with the theoretical maps calculated from 
Eqs. (2) and Eq. (5). 

The next step was subtracting the retardation maps obtained under the loads of 57.06 N and 
16.30 N. The map for this retardation difference   is shown in Fig. 3. The coordinate 
dependences of  for the both geometries associated with the ‘loading’ and ‘perpendicular’ 
diameters were taken from this map. The dependence of  on the X coordinate for the 
‘perpendicular’ diameter was fitted by the function analogous to that given by Eq. (9), in which P 
and   were substituted by P and :  
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Fig. 4a depicts both the experimental data and the fitting curve. The fitting has resulted in the POC 
value 66 = –0.5710.012 B.  

 (a)  (b)
Fig. 2. XY maps of retardation (a) and optical indicatrix orientation (b) induced in the LN disk by the loading 
force 57.06 N ( = 632.8 nm). Compensator position is given by C1 = C0 – 45. 

 

Fig. 3. XY map of retardation difference induced in the 
LN disk under loading force change from 16.30 N to 
57.06 N ( = 632.8 nm). Compensator position is 
given by C1 = C0 – 45. 

 

The dependence  on the Y coordinate obtained for the case of ‘loading’ diameter was fitted 
by the function analogous to Eq. (8), 
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It is seen from Eq. (1) that the denominator tends to zero in the vicinity of points where the loading 
force is applied (|Y|  R), thus leading to singular behaviour of the   parameter. This ensues 
from Eqs. (2), in which the stress component  becomes infinite when X = 0 and |Y| = R. 
Therefore Eqs. (2) represent a restricted model which is not applicable for the regions close to the 
points where the loading force is applied. Then a natural question arises concerning the limits 
where Eq. (11) can be correctly applied while fitting the experimental data. We have investigated 
this problem. As seen from Fig. 4b, the fitting has been performed for the three cases: (1) the full 
data range (i.e., all of the data collected are used in the fitting procedure), (2) the data from the 
interval |Y| < 6 mm  0.88R, and (3) the data from the interval |Y| < 5.5 mm  0.80R. We have 
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obtained the following POC values (1) 66 = –0.3590.011 B, (2) 66 = –0.4800.010 B, and 
(3) 66 = –0.5080.010 B. One can see that narrowing data region used for fitting is followed by 
approaching the 66 value to that obtained with the data of ‘perpendicular’ diameter. Further 
decrease of the data region would result in ‘saturating’ the POC value and, simultaneously, less 
reliability of the fitting due to negative influence of multiple reflection fringes. Therefore we 
conclude that the optimal data region for the case of ‘loading’ diameter is |Y| < 0.80R, so that the 
POC value 66 = –0.5080.010 B is most consistent. 
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Fig. 4. Dependences of retardation difference   on the X coordinate along the ‘perpendicular‘ diameter (a) 
and on the Y coordinate for the ’loading‘ diameter (b) for the LN disk, as measured under loading force change 
from 16.30 to 57.06 N ( = 632.8 nm). Compensator position is given by C1 = C0 – 45. 

To further improve trueness of the measured 66 value, we have repeated the procedures 
described above for the opposite sign of circular polarization of the probing beam. This can be 

realized by setting the compensator at the azimuth C2 = C0+45. As a result, we have obtained the 

POC 66 = –0.5020.009 B for the case of ‘perpendicular’ diameter (see Fig. 5a) and  
66 = –0.4500.008 B for the case of ‘loading’ diameter (see Fig. 5b). 
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Fig. 5. Dependences of retardation difference   on the X coordinate along the ‘perpendicular’ diameter (a) 
and on the Y coordinate for the “loading” diameter (b) for the LN disk, as measured under loading force change 
from 16.30 N to 57.06 N ( = 632.8 nm). Compensator position is given by C2 = C0 + 45. 

We have calculated the mean POC and the corresponding error from the four values given 
above: 66 = –0.5080.049 B. The confidence interval [–0.459; –0.557] complies well with both 
the result reported in the work by Mytsyk et al. [19] (66 = –0.47 B) and the value measured by 
means of the four-point bending method [17] (66 = –0.5730.079 B). This implies that the 
experimental technique for measuring POCs based upon diametrically compressed disks is reliable 
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and could be successfully used to study crystalline and amorphous (glass) optical materials. 
Finally, now we are in a position to explain the inaccurate value of the POC 66 obtained for the 
LN crystals in our earlier work [18]. Namely, the reason is an unjustified choice of the fitting 
region equal to a full diameter of disk, instead of 0.80R as it should be. This factor should be 
necessarily taken into account when processing the retardation data set corresponding to the 
‘loading’ diameter. 

4. Conclusion 
In the present work we have confirmed reliability and high precision of the experimental technique 
[18] suggested earlier for determination of POCs. The technique is based on producing a 
predetermined 2D distribution of mechanical stresses in a transparent material disk compressed 
along its diameter. The technique has been verified on the example of the parameter 66 = 11 – 12 
measured for the lithium niobate crystals. We have shown that this POC can be calculated with 
high enough accuracy. The sources of experimental errors appearing in the frame of this technique 
have been thoroughly analyzed and eliminated. The mean value 66 = 11 – 12 derived in this 
study is equal to –0.5080.049 B and agrees well with the corresponding POC values measured 
with the other methods. The absolute experimental error for the 66 coefficient is equal to 0.049 B, 
whereas the relative error does not exceed 10%. 
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Анотація. У роботі підтверджено високу точність і надійність запропонованого раніше 
експериментального методу вимірювання п’єзооптичних коефіцієнтів, який базується на 
заздалегідь відомому 2D розподілі механічних напружень у прозорому кристалічному або 
скляному диску, стиснутому вздовж діаметра. У роботі ретельно проаналізовано та 
усунуто джерела похибок експерименту. Отримане значення п’єзооптичного коефіцієнта 
66 для кристалів ніобату літію добре узгоджується з літературними даними, визначеними 
за іншими методами.  


