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Abstract. We have derived analytical relations necessary for interpreting piezooptic 
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1. Introduction 
Experimental studies of piezooptic effect (POE) in crystalline materials do not involve remarkable 
problems whenever one deals with the crystals belonging to the cubic or orthorhombic systems and 

higher-symmetry groups of the tetragonal and hexagonal systems (4mm, 422, 4 2m, 4/mmm, 
6mm, 622, 6 m2, and 6/mmm) [1−8]. The matter is that the tensors describing POE for these sym-
metry groups include only so-called 'principal' components ( im , with i, m = 1, 2, 3 and the indices 
i, m corresponding to the directions of light polarization and uniaxial mechanical stress, respec-
tively) and 'diagonal' components 44 , 55  and 66 . On the other hand, there can happen more 
complicated situation when the POE tensor contains both 'non-principal' and 'non-diagonal' com-
ponents such as 14 41 45 16, , ,     etc. Among the well-known crystalline materials, the examples 
are LiNbO3 and LiNbO3:MgO (the point symmetry class 3m), and La3Ga5SiO11 (the class 32) [9, 
10]. Nonetheless, the 14  coefficients have been determined for LiNbO3 and α-BaB2O4 (the sym-

metry class 3m ) using a so-called torsion method [11, 12].  
Following from the matrices of piezooptic coefficients (POCs), the tetragonal crystals may be 

divided into two subgroups:  
(1) the first one embraces the symmetry classes 4, 4  and 4/m; they are characterised by complicated 
POC matrices with ten independent coefficients, including five non-principal ones (a so-called 
'rotational' coefficient 61 , a 'shifting' coefficient 16 , and 'rotational-shifting' coefficients 

44 45,   and 66 );  

(2) the second subgroup embraces the groups 422, 4mm, 4 2m and 4/mmm, with seven inde-
pendent coefficients; only two of these, 44  and 66 , are non-principal.  

The crystals belonging to the first, lower-symmetry subgroup of the tetragonal system (the 
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classes 4, 4  and 4/m) reveal the same form of the POE tensor [8, 13]. We are to stress that, up to 
date, no reliable experimental data have been reported for their POCs. This is due to lack of rele-
vant analytical relations, which are necessary for interpreting the experimental results and calculat-
ing the non-principal POCs on this basis. The aim of the present work is just to solve this problem. 
Below we will describe the POE for the first tetragonaal subgroup only, since the analytical rela-
tions for the second one represent particular cases of the more complicated relations for the first 
subgroup. 

2. Opening remarks and formulation of the problem 
In order to study the POE for the crystals belonging to the first tetragonal subgroup, it is necessary 
to prepare five samples with different crystallographic orientations shown schematically in 
Fig. 1. At the same time, samples of only three different orientations are needed for the crys-
tals of the second subgroup (see Fig. 1a, b, and c).  

 

 

 

 

  

          a)   b)   c)       d)          e) 

Fig. 1. Schemes of sample orientations for studying the POE in tetragonal crystals: (a) direct crystallographic 
cut sample, (b) Х/45-cut, (c) Z/45-cut, (d) Z/22.5-cut ( = 22.5), and (e) В-cut (see the text). 

Let us remind that the principal POCs (і, m = 1, 2, 3) can be obtained on the basis of theoreti-
cal relations derived in the works [9, 10]. The most common experimental technique is based on 
interferometric measurements and additional consideration of experimental errors that appear due 
to micro-wedge shape of a sample: 
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Here λ is the light wavelength in vacuum, ni the refractive index of crystal, kmS  the compo-

nents of elastic compliance tensor, and o
i m  and 'oi m = i m kd  denote the operating stresses de-

fined with respect to a preceding cycle of measurements (for any details see [9]). In the last formu-
lae, the parameter im  means the stress inducing a half-wave phase retardation, kd  the sample 

thickness along the direction of light wave vector k, and 'oi m  the operating stress for the wedge-

like sample rotated by 180° around the direction of light beam.  
For completing the POC matrix of the tetragonal crystals, one should rely on the analytical 

relations for the non-principal POCs 44 66 61 16, , ,    , and 45 , which are analogues of the rela-
tions derived earlier in the study [14]. Unfortunately, the theoretical relations suggested in the 
work [14] are characterised by a number of disadvantages. Below we will itemise them and outline 
the possible ways out. 

1. The relations mentioned above facilitate obtaining only the two coefficients, 44  and 66 . 
Moreover, these relations are written in a form that excludes any possibility for consideration of a 
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wedge-like shape of real experimental samples, when determining the half-wave stresses. How-
ever, it is known that a neglect of even very small wedges (a case which we refer to as a 'micro-
wedge') can lead to notable errors while interpreting the experimental results.  

Let us notice that the 66  coefficient appears in the theoretical relations with its sign undefined. 

It means that one should somehow distinguish between the directions 6 and 6  (see Fig. 1с). This is 
a difficult problem. Indeed, usually the positive directions of the principal axes Х1, Х2 and Х3 (or 
simply 1, 2 and 3) of the optical ellipsoid are determined and the directions 4, 5 and 6 are distin-
guished respectively from 4 , 5  and 6  using a piezoelectric effect [13, 14]. However, since the 
crystals of the point group 4/m reveal no piezoelectric effect, it is necessary to choose some other 
criteria to define the directions 6 and 6  and then determine the sign of the coefficient 66 . The 

simplest solution is as follows. The magnitude and the sign of the POC 66  can be found using 
a relation which does not contain the indefinite sign, i.e. corresponds to some other experimental 
condition [14]). Then the relation that involves the uncertainty “ 66 “ can be used only to deter-

mine more accurately the magnitude of the 66  coefficient. This becomes possible since the latter 
relation contains the Poisson contribution of a very simple from and, therefore, the relevant error 
contributes very little to the total experimental error of the 66  coefficient. 

2. The relations used for determination of the coefficients 16 61,   and 45  include cumber-
some combinations of these POCs. Thus it is impossible to determine these coefficients sepa-
rately. 

3. The experimental conditions enabling determination of the sums of POCs 11 12   have 

not yet been considered. Moreover, it would be very useful to compare these sums found experi-
mentally with the same sums calculated from the involved coefficients obtained in independent 
and separate experiments.  

It is obvious that any reliable studies of the POE for the tetragonal crystals of the first sub-
group require theoretical relations enabling separate determination of the coefficients 16 61,   and 

45 . These relations should be written for the two right-handed coordinate systems, for which the 

directions 6 and 6 , 6* and 6 * , and 4 and 4  are interchanged (see Fig. 1c, d, e). The latter can, in 
principle, help finding out the conditions for unambiguous determination of these POCs. So-called 
'symmetric conditions' of piezooptic experiments should also be considered (see Table 1), with 
further analysis of the relations obtained. In case if the relations turn out to be different for these 
experimental conditions, one should formulate the relevant recommendations for unambiguous 
determination of the non-principal POCs. 

 

Table 1. Analytical relations for determination of POCs in the crystals of symmetry classes 4, 4  
and 4/m using half-wave stress technique, which accounting for micro-wedge shape of samples  

Experimen-
tal condi-

tions 
Relations 

Sample of Х/45°-cut 
m=4( 4 ) 
k= 4 (4) 
i=4( 4 ) 
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Experimen-
tal condi-

tions 
Relations 

m=1 
k=4( 4 ) 
i=1 
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1 14(4)

11 1 ( )
2 'o o

k

nS S
n n


  

  
      

 
 Т.2 

m=4( 4 ) 
k= 4 (4) 
i=1 14(14) 14(14)

1
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1 1
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m=4( 4 ) 
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Sample of Z/45°-cut 
m=3 
k=6( 6 ) 
i=3 
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m=3 
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m=6( 6 ) 
k= 6 (6) 
i=6( 6 ) 

66(66) 66(66)

1
11 12 66 11 12 663 3

1 1

11 1 (2 2 )
'o o

nS S S
n n
  

 

 
  
 
 

       Т.9 

m=6( 6 ) 
k= 6 (6) 
i=3 

3
31 11 12 663 3

3 336(36) 36(36)

11 1 1 (2 2 )
22 'o o

nS S S
n n


 

        
 
 

  Т.10 
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for the indices in brackets one has m = 6 , k = 3, and i = 6  (6) 

Т.11 

m=6 
k=3 
i=6( 6 ) 66(66) 66(66) 66(66) 66(66)

1
11 12 133 3

1 1

11 1 1 1 4
2 ' 'o o o o

nS
n n
 

   

 
  
 
 
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for the indices in brackets one has m = 6 , k = 3, and i = 6  (6) 
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Experimen-
tal condi-

tions 
Relations 

 
m= 6  ( 6 ) 
k= 6  ( 6 ) 
i= 6  ( 6 ) 

4 2 3
11 12 66 16 61
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m= 6  ( 6 ) 
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m= 6  ( 6 ) 
k=3 
i= 6  ( 6 ) 

4 2 3
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m= 6  ( 6 ) 
k=3 
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Sample of Z/22.5°-cut 
 
m= 6  
k=3 
i= 6  ( 6 ) 
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m= 6  
k=3  
i= 6 ( 6 ) 
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m= 6  
k=3 
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Sample of B-cut 
m=B ( B ) 
k= 4  
і=1 1
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1 (1 ) 1 (1 )

1
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1
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'

12( 2 4 2 )
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o on
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Experimen-
tal condi-

tions 
Relations 

m=B ( B ) 
k= 4  
і=1 

1
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11 1 1 1
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m=B ( B ) 
k= 4  
і=4  

11 13 33 31 12 44 45 16

4
11 33 12 13 44 163 3

4 44 (4 ) 4 (4 )

3 2( ) 2(2 )
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
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m=B ( B ) 
k= 4  
і=4 

4
45 16 163 3

4 4 4 44 4
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' 'B B B B

o o o o
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

 
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         
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Footnotes: (1) in cases when the operating stresses appearing in a formula are indicated by indices in 
brackets (e.g., 41(41)

o ), one should put 41
o  into the formula for the direct experimental conditions and –

41
o  for the symmetric conditions; (2) the upper and lower signs of the terms 16 45 16, 2    and 16S  appear-

ing in Eqs. (Т.23) and (Т.25) for the В-cut sample correspond to the conditions m B and m B , respec-
tively. 
 

3. Experimental manifestations of POE for a Х/45o-cut sample  

Consider the relation used for determination of π44 basing on the measurements of optical path 

change k  at i=4, k= 4  and m=4 [14]: 

3
11 13 31 33 44 4 11 13 33 44 44 4 4

1 1( 2 ) ( 2 ) ( 1)
8 4

d n S S S S d n                  .  (2) 

In the frame of half-wave stress technique we have 4 = λ/2, with 44im     being the 

half-wave stress and 44 44 4
o d   the operating stress. Let us insert these relations into Eq. (2) and take 

into account the conditions needed for compensation of the error caused by the wedge-like shape of sam-
ple (in a manner analogical to Eq. (1), one should replace 1/ im

o  with (1/ im
o + 1/ 'im

o )/2. Then one 
gets the relation 

4
11 13 31 33 44 11 13 33 443 3

4 44 44 4

12 1 12 2( 2 )
'o o

nS S S S
n n
    

 
  

          
 

,    (3) 

which can be used for evaluating the coefficient 44  on the basis of experimentally determined 

operating stresses 44
o  and 44'o . In case when so-called ‘symmetric’ experimental conditions are 

dealt with (i= 4 , k=4 and m= 4 ), one obtains the relation analogical to Eq. (3), where the pa-

rameters 44
o  and 44'o  are replaced by 44

o  and 44'o  (see Eq. (Т.1) in Table 1). 

Below we will consider a number of experimental geometries relying on a Х/45-cut 
sample (see Fig. 1b), which are used for checking reliability of the POCs values and signs. Basing 
upon the example of crystals belonging to the point symmetry classes 32 and 3m, the authors of the 
works [9, 10] have demonstrated for the first time that the Х/45-cut sample allows for determining the 
principal coefficient 11 in two different experimental geometries. The coefficient 11  for the classes 
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4, 4  and 4/m can also be determined using the Х/45-cut sample (notice that derivation of the 
corresponding theoretical relations is the same as in Refs. [9, 10]). The relevant relations valid 
for the direct and symmetric experiment geometries are gathered in Table 1 (see Eq. (Т.2)). Notice 
also that the Х/45о-cut sample admits experimental geometries, for which the sums of principal POCs 
can be found. Then a comparison of these sums with the corresponding sums arising from the coef-
ficient values determined independently on the direct-cut samples (see Fig. 1a) would serve as a 
reliability criterion for the POCs. 

Let us consider the experimental geometry given by m=4, k= 4  and і=1. The relation 
3

1 1 1 2n B n   , which can easily be obtained after differentiating the optical impermeability 

coefficients iB =1/ 2
in , is valid for the light polarization direction і=1. Let us evaluate the change 

1B  in the optical impermeability coefficient, using the equation of the POE 

i im mB   .      (4) 

The summation in Eq. (4) is performed over the index m=1, 2, ..., 6, and m  denote the mechani-
cal stress tensor components.  

Now it is necessary to find the form of the stress tensor [ m ] on the basis of the relation [14] 
2 2 2

1 2 3 4 5 6[ ] [ , , , , , ] [ , , , , , ]m a b c bc ac ab         ,   (5) 

where a, b, c are the directional cosines of the uniaxial loading force vector P,   is the value uni-
axial pressure. Obviously, if the force acts along the direction m=4 (see Fig. 1b), then we have 

a = b = cos45° = 2 2  and c = cos90° = 0. In terms of Eq. (5), the [ 4 ] tensor  (for m=4) may be 
given as 

 4
1 1 10, , , ,0,0
2 2 2

      
.    (6) 

Hence, the non-zero components of the tensor [ 4 ] are as follows: 2 3 4 / 2      . Using 

Eq. (4) and the matrix of POCs for the symmetry classes 4, 4  and 4/m [8, 13], one gets  

1 12 13
1 ( )
2

B     .      (7) 

Thence the relation for 1n  follows: 

3
1 12 13 1

1 ( )
4

n n      .      (8) 

One has to insert this relation into the formulae describing the change in the optical path for the 
light propagating though sample [14]:  

 1k i k k k in d d n      ,     (9) 

where k
  means the strain occurring along the direction k of light propagation. Here the star indi-

cates that the strain k
  in the k-direction differs from the components of the strain tensor k . 

To derive the sample strain 4
  along the direction k= 4  (see [14]), we are to consider a cross 

section of a surface of strain tensor,  
2 2 2

1 1 2 2 3 3 4 2 3 5 1 3 6 1 2 1x x x x x x x x x           ,   (10) 
by a line given by x1 = 0 and x3 = –x2, which corresponds to the optical beam direction k= 4  (see 
Fig. 2):  
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2 2 2
2 2 3 2 4 2 1x x x     ,     (11) 

with 2 3 4, ,   being the components of the strain tensor. Using Eq. (11), one can find the coordinate 

x2 corresponding to the cross section point of the line k = 4  and the surface determined by Eq. (10): 

2
2 3 4

1x
  


 

.     (12) 

 

Fig. 2. Cross section of characteristic surface of the strain tensor 
by a line k = 4  (see the text): x1 = 0, x3 = –x2. 

 

The semi-axis of the surface given by Eq. (10) is determined as 4 41e    (see Fig. 2 and [13, 

14]). From the other side, one can find the semi-axis value as 2 2
2 34*e x x  2 2x . After ac-

counting for Eq. (12), one gets 

24
2 3 44

1 2* 2
ε * ε ε ε

e x  
 

, 

The latter yields in the following sample strain occurring along the direction k= 4 : 

2 3 44
1 ( )
2

       .      (13) 

The components 2 3 4, and   of the strain tensor are to be determined issuing from the 

Hook’s law ( k km mS  ) and using the elastic compliance matrix Skm [8, 13] for the classes 4, 4  

and 4/m, and the stress tensor components [ 4 ] from Eq. (6) 

(  2 11 13 / 2S S   ,  3 13 33 / 2S S   , and 2 44 / 2S  ). Inserting these relations into 

Eq. (13), one arrives at the strain occurring along the direction k= 4  under the action of uniaxial 
stress along the direction m=4:  

11 13 33 444 ( 2 )
4

S S S S
     .     (14) 

Basing on Eqs. (14), (8) and (9), one can derive the sum of the principal POCs 12 13   for the ex-

perimental geometry of Х/45о-cut sample (the optical path change k ) with accounting for the 
Poisson strain: 

3
12 13 1 11 13 33 44 14 4 4

1 1( ) ( 2 ) ( 1)
4 4

d n S S S S d n             .  (15) 

This may be specified for the cases of half-wave stress technique and wedge-like sample shape as  

1
12 13 11 13 33 443 3

1 14 14 1

11 1 ( 2 )
'o o

nS S S S
n n
 

 

  
         

 
.   (16) 
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The relation for the symmetric experimental conditions of determining the sum 12 13   (m= 4 , 

k=4, and і=1) are analogical and can be obtained after substituting the operating stresses 14
o , 14'o  

by  
14 14, 'o o  . These two relations are presented in Table 1 (see Eq. (Т.3)).  

Notice that the Х/45о-cut sample also allows accomplishing the additional experimental ge-
ometries. In particular, the direct conditions given by m=1, k= 4  and і=4, and the symmetrical ones 
(m=1, k=4 and і= 4 ) enable finding the sum 12 31  ; the pair of direct and symmetrical (in 

brackets) conditions specified by m=4( 4 ), k=1 and і=2 can result in the sum 11 13  ; and the 

conditions m=4( 4 ), k=1 and і=3 yield in the sum 31 33  . All the analytical relations for the 
Х/45о-cut samples are given in Table 1 by Eqs. (Т.1)–(Т.6), two of which are symmetrically iden-
tical to Eq. (Т.1). These relations facilitate determining the coefficient 44  for the both direct and 
symmetrical experimental conditions. Basing on the other ten relations, one can find the coefficient 
π11 and the other sums of the principal POCs. 

The direct and symmetric experimental conditions differ by the directions of light propaga-
tion and polarization (4 or 4 ), as well as by the directions of mechanical loading. Table 1 shows 
that all of the relations for the direct and symmetric conditions are in fact the same, i.e. the 
results for the POCs or their sums are independent of choice of the directions 4 or 4 . As a conse-
quence, one can define these directions, along with the corresponding experimental conditions, as 
‘symmetrically identical’. Below we will show that, for the groups of symmetry 4, 4  and 4/m, the 
directions 6 and 6  (for a Z/45o-cut sample) and the directions 6  and 6 *  (for a Z/22.5o-cut sam-
ple – see Fig. 1c, d) are also symmetrically identical. Thus, one can correctly and unambiguously 
determine the non-principal POCs irrespective of solving the problem of definition of these direc-
tions. One should emphasise in this respect that the analysis [14] has proved the directions 4 and 4  
to be not symmetrically identical for the trigonal symmetry groups 3, 3 , 3m and 32. Relevant rec-
ommendations for unambiguous choice of these directions have also been formulated in this work.  

4. Experimental manifestations of POE for Z/45º-, Х/22.5º- and В-cut samples 
Above we have considered in detail how to derive the theoretical relations for the POE associated 
with the Х/45º-cut sample. The final relations used for determining the non-principal POCs for the 
samples of other orientations are presented in Table 1. Each line of Table 1 combines the two 
relations referred to the direct and symmetric experimental conditions, the latter being put in 
brackets. The main peculiarities of these relations will be discussed below and the appropriate practi-
cal conclusions will be drawn. 

4.1. Z/45º-cut sample  
Taking the conditions i=3, m=3 and k=1 (or k=2 – see Fig. 1) in Eq. (1), one can obtain the follow-
ing relation for determination of the coefficient π33: 

13
33 33

3 33 33 3
3

21 1 ( 1)
2 'o o

S
n

n n



 

 
      

 
,    (17) 

where the condition S13 = S23 holds true. A comparison of Eq. (Т.7) for the Z/45º-cut sample (see 
Table 1) with Eq. (17) for the direct-cut sample testifies that these relations are the same.  

Now let us write out the relations for the coefficient 13  under the conditions i=1, m=3, k=2 
and i=2, m=3, k=1, following from Eq. (1): 
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13
13 13 3

1 13 13 1

21 1 ( 1)
2 'o o

S
n

n n



 

 
      

 
,    (18) 

13
23 13 3

1 23 23 1

21 1 ( 1)
2 'o o

S
n

n n



 

 
      

 
.    (19) 

After comparing these equations with each other and with Eqs. (Т.8), and taking into account that 
the equality 13 23   is satisfied for the symmetry classes under test, one arrive at the conclusion 
that all of these relations are identical. The operating stresses are also the same 

( 13
o = 23

o = 63
o = 63

o ). However, the latter equalities cannot be true in case when the samples 

have a micro-wedge shape. Nonetheless, the following equalities remain to be valid for the sums 
of the im

o  reciprocals in the latter case: 

13 13 23 23 63 63 63 63

1 1 1 1 1 1 1 1
o o o o o o o o       
      

   
.    (20) 

We should also stress that the Z/45º-cut sample allows for four different experimental geome-
tries for measuring the rotational-shifting coefficient 66 . These geometries are described by 
Eqs. (Т.9) and (Т.11). Nonetheless, Eqs. (Т.11) remain to be preferable. Indeed, the corresponding 
experimental error for the POC 66  is then associated only with the error of determining the oper-

ating stresses, while utilisation of Eqs. (Т.9) will give rise to additional errors referred to determi-
nation of the Poisson-contribution term and to the principal POCs 11  and 12 .  

4.2. Z/22.50-cut sample 
Let us write out the analytical relation for determination of the sum of POCs 16 61   [14]: 

3 4
16* 6*

4 2 3
11 12 66 16 61

4 2 4 3
11 66 12 16 16*

1  cos
2

[ (1 tan ) 2( ) tan ( 2 )(tan tan )]

cos [(2 ) tan (1 tan ) 2 (tan tan )]( 1) ,

d n

d S S S S n

  

        

     

  

      

      

   (21) 

where the half-wave stress technique and the consideration of a wedge-like sample shape are in-

tended, as always. Let us substitute 6*  in Eq. (21) with λ/2 and  with 6*6*
o  (see Eqs. (2) and 

(3) and the relevant comments). Then the following relations for the sums 16 612   expressed in 

terms of the operating stresses 6*6*
o  and 6*6*'o  will take place: 

  

4 2 3
11 12 66 16 61

2
11 663 4

1 6*6* 6*6*
4 3 3

12 16 1 1

(1 tan ) 2( ) tan ( 2 )(tan tan )

1 1 2[(2 ) tan
2 cos '

(1 tan ) 2 (tan tan )]( 1) .

o o S S
n

S S n n

        

 
  

  

     

 
      

 

    

   (22) 

This formula is valid for the experimental conditions i=m=6* and k= 6 . 
The authors of the work [14], from which Eq. (21) is taken, have not analysed the symmetric 

experimental conditions i=m= 6  and k=6*. Therefore it is not clear whether the ambiguity in de-
termination of the sum 16 612   exists for the direct and symmetric conditions. Let us consider 
the relations for the symmetric conditions analogical to Eqs. (21) and (22). For this aim we should 
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establish the form of the stress tensor for the case of m= 6 . According to Fig. 3, the directional 

cosines a, b, c of the vector P (m= 6 ) may be found as  

P = P(a, b, c) = P(cosα, –sinα, 0).     (23) 

 

Fig. 3. A scheme explaining determination of directional cosines for the 
vector P (see the text). 

 

Combining Eq. (23) and Eq. (5), one can derive the components of 6*[ ]  tensor: 

2 2
6*

2 2

cos ,sin ,0,0,0, sin cos

cos 1, tan ,0,0,0, tan .

     

   

      
   

   (24) 

To determine the refractive index change 6*in n  , one should intersect the optical indicatrix by 

the line i= 6  (the equation of line x2 = –x1tanα and x3 = 0 – see Fig. 4) and use the equation of the 
perturbed indicatrix [14]): 

 

Fig. 4. Cross section of perturbed optical indicatrix by 

a line i = 6  (see the text). 

 

2 2 2
1 1 1 2 2 2 3 3 3 4 2 3 5 1 3 6 1 2( ) ( ) ( ) 2 2 2 1B B x B B x B B x B x x B x x B x x              .  (25) 

The result is 
22 2 2

1 1 1 2 2 1 6 1( ) ( ) tan 2 tan 1B B x B B x B x         , 

or 

1 1 2 6

1 2

1 2,     tan 2 tan
2tan

 .x B B B B
B B B

     
 

   
 

   (26) 

The refractive index 6* *n  is equal to (see Fig. 4) 

2 2 2
1 2 1 16** 1 tan cosn x x x x       

or, while considering Eq. (26) and the equality B1=B2=1/ 2
1n , we have 

6* 2 2
1 2 1

1 1
2 2 2 2

1 1

1 1 1 1*
cos costan (1 tan )

1 .
cos 1 tan 1 cos

n
B B B B B

n n

n B n B

    

    

 
   

 
  

   (27) 

The same refractive index under the condition of non-perturbed indicatrix (see Eq. (27) and the 
conditions B = 0) is equal to 16*n n . Then the change in the refractive index equals to 

16* 6** *n n n   , i.e. we have 
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2 21
1 16* 2 2

1

1* cos .
21 cos

nn n n B
n B

  
 

   


    (28) 

The relations for the iB  parameters (i = 1, 2, 6) follow from the form of the POC matrix and the 

tensor 6*[ ] , as well as Eqs. (24), (26) and (4): 

2 2
1 11 12 16

2 2
2 12 11 16

2 2
6 61 61 66

cos ( tan tan ),

cos ( tan tan ),

cos ( tan tan ).

B

B

B

       

       

       

  

  

  

 

With Eqs. (26) and (28) this leads to  

3 4 4 2 3
1 11 12 66 16 616*

1* cos [ (1 tan ) 2( ) tan ( 2 )(tan tan )].
2

n n                     (29) 

The sample strain 6* *  (k=6*) under the action of the stress tensor [ 6* ] (see Eq. (24) and 

Fig. 5) can be found after intersecting the characteristic surface by the line given by the formulae 

x1 = x2tanα and x3 = 0 (see Eq. (10)): 

2 2 2 2
1 2 2 2 6 2tan tan 1x x x       ,  2 2

1 2 6

1

tan tan
x

    


 
.   (30) 

It is seen from Fig. 5 that the semi-axis 6*1 *  reads as  

2 2 2 2
1 2 2 2

6* 1 2 6

1 1 11 tan
cos cos tan tan

xx x x 
      

      
 

, 

or  
2 2

6* 1 2 6* cos ( tan tan )         .    (31) 

 

Fig. 5. Cross section of characteristic surface of the strain tensor 
by a line k = 6* (see the text). 

 

Finally, the strain tensor components 1 2,   and 6  may be obtained from the Hook’s law, 

the form of the 6*[ ]  tensor (see Eq. (24)), and the elastic compliance matrix kmS : 

2 2 2 4 3
1 11 12 16tan cos ( tan tan tan )S S S         , 

2 2
2 12 11 16cos ( tan tan )S S S       ,    (32) 

2 3 2
6 16 16 66tan cos ( tan tan tan ).S S S          

Basing on Eqs. (29), (31), (32) and (9), one gets 

4 4 2 3 3
6* 11 12 66 16 61 6* 1

4 2 4 3
11 66 12 16 6* 1

1 cos [ (1 tan ) 2( ) tan ( 2 ) (tan tan )]
2

cos [(2 ) tan (1 tan ) 2 (tan tan )] ( 1).

d n

S S S S d n

           

     

         

      
 (33) 

Notice that Eq. (33) is identical to Eq. (21). Hence, we have the two independent relations for de-
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termination of the POC sum 16 612   in the two symmetrically identical experimental condi-

tions: 
i=m=6*, k= 6 * ,  i=m= 6 * , k=6*.    (34) 

Another principled question is as follows: do the relations for 6*  linked to the Z/22.5-cut 

sample (see Eqs. (21) and (33) and Fig. 3) depend on the choice of right-handed coordinate system 
and, respectively, on the choice of directions 6* and 6 * ? For example, let us rotate the coordinate 

system around the axis 1 by 180 (see Fig. 3). Under such conditions the directions 6* and 6 *  are 
interchanged. However, the sums of the POCs 16 612   are given by the identical relations in 

the both cases, as shown for the particular conditions (34) differing just by the directions 6* and 
6 * . One can also demonstrate a possibility for arbitrary choice of the directions 6* and 6 *  for 
the most general case. For this aim let us rotate a sample shown in Fig. 3 by 90 around the axis 3 
(see Fig. 6). This will result in replacing the axis 1 by the axis 2, and vice versa. Indeed, in 
tetragonal crystals these axes are identical with respect to both the refractive indices and the POCs. 
As a result, we introduce the angle α  and the directions 6* and 6 *  the same as in Fig. 3.  

 

Fig. 6. A sample rotated around the axis 3 by 90º with respect to that shown 
in Fig. 3 (see the text). 

 

Thus we have proved that the sum 16 612   is unambiguously determined for the case of 

Z/22.5-cut samples. The corresponding Eqs. (21) and (33) are now combined into Eq. (Т.15) in Ta-
ble 1, which can be used in the frame of half-wave stress technique with taking into account micro-
wedge sample shapes. 

Notice that the relations (33) and (Т.15) at α=45 are transformed into Eqs. (Т.9) for the Z/45-
cut sample, which do not contain the sum 16 612  . Using the samples of Z/22.5º-cut, it is possi-

ble to determine the coefficients 33 13,   and 31 , as well as the sum 11 12   (see Table 1 and 
Eqs. (Т.13), (Т.14), (Т.16), (Т.21) and (Т.22)). Eqs. (Т.13) and (Т.14) for determination of the co-
efficients 33  and  13  do not depend on the angle α. They are identical both to Eqs. (Т.7) and 

(Т.8) for the Z/45º-cut samples and to the corresponding relations obtained for the direct-cut samples 
(see Eqs. (17)–(19)). 

Eq. (Т.16) includes a complicated sum of the elastic compliance coefficients Skm (ΣSkm). The 
latter can be derived while inserting the expression for the coefficient 31  into this relation (notice 

that the π31 coefficient is determined using the direct-cut sample). Inserting the sum ΣSkm into 
Eq. (Т.15) enables finding the sum 16 612   with essentially reduced error. Eqs. (Т.19) and 
(Т.20) are also important because they do not contain the Poisson strain contribution and thus the 
experimental errors for the sum 16 612   can be small enough. 

4.3. В-cut sample 
4.3.1. General considerations 

In order to describe completely the POE for the classes 4, 4  and 4/m, we are to derive the rela-
tions used when determining the shifting coefficient π16 and the rotational-shifting coefficient  

45 . To determine the POC  16 , it is necessary to prepare a sample, which ensures that the light 
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is polarised along the direction i=1 and the component σ6 of the mechanical stress tensor m  re-

mains nonzero. Determination of  45  means utilisation of a sample allowing to provide the light 

polarization i=4 and a nonzero component 5 . 
We have found out that these conditions can be provided with a sample of so-called  

В-cut. As seen from the scheme of such a sample given by Fig. 7, one has to make cuts at the an-
gles of 45 with respect to the directions 1 and 4, using the initial Х/45-cut sample (the planes of 
the cuts are shown by dotted lines in Fig. 7; see also Fig. 1e for more details). 

 

Fig. 7. A scheme of В-cut sample for determining π16 and π45 coefficients; 

В and B  faces are indicated by arrows (see the text). 
 

Fig. 7 testifies that, with the light propagating along the direction k= 4 , it is possible to en-
sure the polarization parallel to the i=1 and i=4 directions. For finding the changes in the refractive 
indices δn1 and δn4, as well as the strain 4 *  occurring along the direction k= 4 , one should obtain 

the stress tensor for the case when the uniaxial pressure force Р is applied along the directions per-
pendicular to the faces В and B  (i.e., m В and m B ). 

It is easy to show that the directional cosines a, b, c of the vector P under the condition of 
m В are as follows:  

PВ = PВ(a, b, c) = PВ(cos45°, cos60°, cos60°) = PВ ( 2 2,1 2,1 2) , 

while under the condition of m B  one has  
(cos45 , cos60 , cos60 ) ( 2 2, 1 2, 1 2)BB BP P P         . 

According to Eq. (5), the stress tensors for the cases of mВ  and m B  are given by 

  1 1 1 1 2 2, , , , ,
2 4 4 4 4 4B 
 

  
 

,     (35) 

1 1 1 1 2 2, , , , ,
2 4 4 4 4 4B 
 

      
 

.    (36) 

4.3.2. Independent determination of the rotational coefficient 16  

The conditions needed for determining the 16  coefficient are as follows: і=1, k= 4 , and m В. 

After calculating the refractive index change δn1 and the sample strain 4 *  and considering 

Eq. (35), one can find the optical path change 4  on the basis of Eq. (9). When m В, we obtain 

3
11 12 13 16 14

11 33 12 13 44 16 14

4
1 (2 2 )
8

1 ( 2 4 2 ) ( 1).
8

d

S S S S S S d n

n     



     

      
   (37) 

The uniaxial pressure direction parallel to m B  would lead to the sign reversal for the compo-
nents 5  and 6  (see Eq. (36)). Then the relation allowing determination of the POC 16  will dif-

fer by the signs of the terms 2 16  and 2 S16:  



Analytical relations 

Ukr. J. Phys. Opt. 2013, Volume 14, Issue 3 115 

3
11 12 13 16 14 4

11 33 12 13 44 16 14

1 (2 2 )
8

1 ( 2 4 2 ) ( 1).
8

d n

S S S S S S d n

     



     

      
   (38) 

Eqs. (37) and (38) that take the micro-wedge shape of samples into consideration and can be used 
with the half-wave technique are included in Table 1 (see Eq. (Т.23)). Notice that, apart of 16 , 

Eq. (Т.23) contains the four principal POCs and a complicated sum of the kmS  coefficients. Poten-

tially this can bring about increasing errors and, as a result, low experimental accuracy for the 16  

coefficient. On the other hand, the signs of the 16  coefficient in the two versions of Eq. (Т.23) 
written for the direct and symmetric experimental conditions are opposite. Then one can exclude all 
the principal POCs and all the elastic compliances, except for S16, when using the difference be-
tween these versions of Eqs. (Т.23) written under the conditions m B  and mВ. As a conse-
quence, one derives a simple relation given by Eq. (Т.24), which is preferable while calculating the 
POC 16 . 

4.3.3. Determination of the POC difference 2 45  – 16  

Under the conditions considered above (і=1, k= 4  and mВ) it is necessary to change the direction 

of light polarization by 90°, resulting in і=4. Calculating δn4 and 4
  with the procedures described 

above and inserting these parameters into Eq. (9), one can obtain the relation that includes the POC 

45 : 

3
11 13 33 31 12 44 45 16 44 4

11 33 12 13 44 16 44

1 [ 3 2( ) 2(2 )]
16

1 ( 2 4 2 ) ( 1).
8

d n

S S S S S S d n

         



         

      
  (39) 

Changing pressure direction to m B  gives rise to a similar relation, which differs by the signs of 

the terms 45 16(2 )2    and 2 S16:  

3
11 13 33 31 12 44 45 16 44 4

11 33 12 13 44 16 44

1 [ 3 2( ) 2(2 )]
16

1 ( 2 4 2 ) ( 1).
8

d n

S S S S S S d n

         



         

      
  (40) 

The both formulae are combined in Eq. (Т.25), where the upper and the lower signs of the terms 

2 (2π45 – π16) and 2 S16 correspond to the conditions mВ and m B , respectively.  

Following from non-identity of Eqs. (39) and (40) at m В and m B  (see also Eq. (Т.25)), 
one can conclude that arbitrary choice of the directions В and B  can lead to ambiguous determi-
nation of the POC difference 45 16(2 )2   . The same concerns the 16  coefficient calculated 
on the basis of Eqs. (37), (38) and (Т.23). However, the difference of the two versions of 
Eq. (Т.25) written for the cases of m В and m B  (see Eq. (Т.26)) reveals no ambiguity with 
respect to the POC combination 45 16(2 )2   . Besides, most of the POCs and the kmS  coeffi-
cients are then excluded from the formula and, as a result, the 45 162   value can be determined 
with high enough accuracy. The same also refers to Eq. (Т.24) used for calculating the POC 16  
(see the comments appearing below Eq. (38)). 
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After inserting the π16 coefficient into Eq. (Т.26) and Eq. (Т.15) (or Eqs. (Т.17)–(Т.20)), one 
can find the POCs 45  and 61 , respectively. It is obvious that the POC 61  obtained on the basis  
of Eqs. (Т.17)–(Т.20) should reveal a relatively lower error, since the Poisson contribution in  
these formulae is either absent or associated with s single elastic compliance coefficient S13. At the 
same time, the Poisson strain contribution in Eq. (Т.15) is linked with a complicated combination 
of the coefficients kmS , and so the error of each of them will inevitably contribute to the total  

experimental error. 

4.3.4. A choice of coordinate system 
Let us finally consider another principled question: does the ambiguity of calculation of the POC 

16  and the POC difference 45 162   depend on the choice of right-handed coordinate system? 
It has been shown in the works [9, 10, 14] that the ambiguity in the choice of the directions 4 and 

4  for the trigonal crystals of the symmetry classes 32, 3m and 3m does lead to ambiguous calcu-
lation of the coefficients 14 41,   and 44 .  

In order to solve the problem, let us consider experimental manifestations of the POE for the 
В-cut samples of crystals with the symmetries 4, 4  and 4/m. Let us have the two right-handed 
coordinate systems in which the directions 4 and 4  are interchanged (notice that the directions 4 
and 4  in Fig. 8 are interchanged with respect to the corresponding directions presented in Fig. 1e). 
Then the light polarization can be aligned with the directions і=1 and і= 4  (see Fig. 8), the light 
propagation direction with k=4, while the tensors [ B ] and [ B ] would differ from those given 

by Eqs. (35) and (36). Below we will derive the latter tensors. If the condition PВ is fulfilled, then 
the angle between the vector P and the direction 1 is equal to 135 (see Fig. 8). The directional 
cosine a of the vector P is equal to cos135= – 2 2 . It is seen from Fig. 8 that the projection of P 

on the direction 4  is equal to 

4P  = Рcos45 = Р 2 2 .    (41) 

 

Fig. 8. A scheme of orientations of crystallographic directions 1, 4 and 
4  which differ from those shown in Fig. 1e (see the text). 

 

To determine the directional cosines b and c, one should find the projections of P upon the axes 2 
and 3. The mutual arrangement of the directions 1, 2, –2, 3, 4 and 4  is schematically represented 
in Fig. 9. It follows from Fig. 9 that 

–Р2= 4P cos45= 4P 2 2 ,  Р3= 4P cos45= 4P 2 2 .  (42) 

 

Fig. 9. Arrangement of directions 1, 2, –2, 3, 4 and 4  for finding projections of 
the P vector on axes 2 and 3 (see the text). 

 

With accounting for Eq. (41), Eqs. (42) may be rewritten as –Р2 = Р/2, Р3 = Р/2 or b = Р2/Р = –
1/2, c = Р3/Р = 1/2. Putting the quantity 
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P = P(а, b, c) = P(– 2 2 , –1/2, 1/2) 

into Eq. (5), one readily obtains the tensor B   : 

  1 1 1 1 2 2, , , , ,
2 4 4 4 4 4B 
 

   
 

.     (43) 

Analogically for the case of P  B  we have  

BP
 
= BP (– 2 2 , 1/2, –1/2), 

and the tensor [
B ] may be presented as 

1 1 1 1 2 2, , , , ,
2 4 4 4 4 4B 
 

      
 

.     (44) 

It is seen that the signs of 5  and 6  have changed, when compared to Eq. (43). Then using 

the refractive index changes δn1 and 4n  and the strain 4
  arising when the stresses defined by 

Eqs. (43) and (44) are applied, one can calculate the optical path k. For example, at і=1, k=4 and 
m В one gets 

3
4 11 12 13 16 4 1

11 33 12 13 44 16 4 1

1 (2 2 )
8

1 ( 2 4 2 ) ( 1).
8

d n

S S S S S S d n

     



     

      
   (45) 

This relation is identical to Eq. (37) used for calculation of the coefficient π16. Under the con-
dition mB  one can obtain the relation for π16 identical to Eq. (38). The same concerns the problem 
of determination of the POC difference 45 162  : at і= 4 , k=4 and mВ (or mB ) one obtains the 

relations identical to Eq. (39) or Eq. (40). At the same time, Eqs. (Т.24) and (Т.26) remain identical 
in the both coordinate systems (see Fig. 1e and Fig. 8).  

Hence, the directions В and B  are not symmetrically identical for the classes 4, 4  and 4/m, 
unlike the directions 4 and 4 , 6 and 6 , and 6*  and 6 * . However, the differences of the two ver-

sions of Eq. (Т.23) and Eq. (Т.25) written for the cases of mВ and m B  would result respec-
tively in Eqs. (Т.24) and (Т.26). The latter relations reveal no ambiguity concerning the problem of 
calculation of the POCs 16  and the POC combination 45 162  . This conclusion is also true of 

experimental determination of the POCs 45  and 61 , the relations for which include the POC 

16 . In other words, the right-handed coordinate system for the В-cut sample can be chosen arbi-

trarily, using only the most general recommendations for choosing crystallographic axes for the 
tetragonal crystals. 

5. Conclusions 
We have derived the analytical relations which describe all of the POCs for the tetragonal crystals 
belonging to the symmetry classes 4, 4  and 4/m. These relations take a micro-wedge shape of real 
samples into consideration. We have shown that a number experimental geometries associated 
with indirect cuts of crystal samples enable determining the principal POCs πim (i, m = 1, 2, 3) and 
their sums of the type 11 12 12 13,     , etc. After calculating these POCs on the basis of our 

theoretical results, one can compare their values im   with those experimentally obtained using the 
direct-cut samples. Such a comparison seems to be a strong enough test of reliability of the ex-
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perimental results and an effective way to reveal a piezooptic identity of samples obtained from 
different parts of the same crystalline boule or from different boules. 

To determine the POCs for the second subgroup of tetragonal system (i.e., for the point sym-
metry groups 422, 4mm, 4 2m, and 4/mmm), it is enough to use the analytical relations for the 
direct-cut, Х/45- and Z/45-cut samples. 
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Анотація. Одержано аналітичні співвідношення для визначення усіх п’єзооптичних коефіцієн-
тів за інтерферометричним методом із урахуванням мікроклиновидності реальних зразків. 
Представлено результати для тетрагональних класів симетрії 4, 4  і 4/m. Співвідношення 
для точкових груп 422, 4mm, 42m  і 4/mmm є простими частковими випадками загальних 
співвідношень для п’єзооптичного ефекту в тетрагональних кристалах.  
 


