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Abstract. In the framework of paraxial approximation we consider evolution of a 
monochromatic Gaussian beam diffracted by a corner formed by three verges of the 
phase wedges of different types and the  -phase plate. We have found that the 
edges of the phase wedge generate macroscopic chains of identical optical vortices 
that disappear at the far field zone. At the same time, the  -phase plate can repro-
duce a very complex wave field whose structure depends on the scale of observa-
tion. At large scales there appear two  -cuts resembling broken edge dislocations 
with perpendicular directions. At small (some microns) scales two short vortex 
chains consisting of alternating-sign optical vortices are nucleated near the corner of 
the wedge. The analysis shows that the sizes of the chains decrease quickly when 
approaching the wedge surface. This enables us to assume that the  -phase plate 
can create so-called optical quarks in the evanescent waves of the edge field. 
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1. Introduction 
It is well known [1] that the diffraction process reproduces geometry of the edges of obstacle that 
scatters incident monochromatic beam. For example, a straight edge of a slab-sided phase plate 
begets a set of rectilinear diffracted maxima and minima parallel to the edge. However, even a 
very small disturbance of slab-sidedness leads inevitably to breaking the former symmetry down. 
There appears a new, hidden symmetry of the diffracted field, structural sells of which are optical 
vortices. Indeed, a slab-sided phase plane turns into a phase wedge, while the rectilinear diffracted 
maxima and minima are transformed into chains of optical vortices along the wedge brink [2–4]. 
The nature of such threaded vortex structure is rather simple. The brink of the wedge tears the 
wavefront out, whereas the slope of the wedge medium entails smooth phase changing. If we go 
around some axis perpendicular to the wedge base, though passing through the wedge brink along 
a closed contour, we will find that the phase incursion can reach the value 2  at a definite contour 
radius. This is a necessary condition for nucleating an optical vortex with an integer topological 
charge at the corresponding site of the wavefront in the propagating beam. Since the extension of 
the wavefront is much larger than the wavelength of the incident light, a whole chain of identical 
optical vortices will spring up at the wave zone of the diffracted beam. 

Generally speaking, the phase wedge can be treated as an involute of a spiral phase plate [2] 
for generating optical vortices. However, such an involute presupposes a presence of all four edges 
of the wedge. It is these edges that bring additional perturbations into the symmetry of the dif-
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fracted beams in the shape of hidden chains of the optical vortices. As a rule, such additional vor-
tex chains can stretch over comparatively short lengths (several wavelengths), being got lost in the 
general diffraction pattern.  

However, sometimes they come to the foreground, breaking the basic diffraction pattern 
down. This takes place, e.g., when the optical vortices with fractional topological charges are gen-
erated. Some fragments of this phenomenon have been considered by Berry [5] on the example of 
a spiral wave plate with a fractional topological charge. The fact is that the spiral phase plate with 
the phase step being equal to a multiple of 2  is intended for shaping integer-order optical vor-
tices [6]. It would have been logical to assume that the spiral phase plate could generate the frac-
tional-order optical vortices. As far back as in 1995 Soskin has shown [7] that computer-generated 
optical vortices can bear fractional topological charges, though remaining structurally unstable, 
while Berry [6] has described destruction of the fractional-order vortices into chains of integer-
order optical vortices in the Gaussian beam evolving in the free space. Recently it has been shown 
that the phase singularities can nevertheless exist at sufficiently large distances in so-called error-
function beams [8]. 

The aim of the present study is to trace the evolution of the vortex chains in the beam dif-
fracted by the edges of the optical wedge, including the angles of slab-sided phase plates, which 
originate from nucleation of the fractional-order optical vortices. 

2. Gaussian beam diffracted by the phase wedge 
Let us consider a monochromatic Gaussian beam passing through a transparent dielectric phase 
wedge (with the refractive index wn ) lodged in a vacuum as shown in Fig. 1a, b and c. The phase 

wedge is characterised by the two angles   and   and the basic height h . The axis of the Gaus-

sian beam is directed along the verge of the wedge.  

 

Fig. 1 Different types of phase wedges: (a) , 0   , (b) , 0   , (c) 0, 0   , and (d) composite step-
phase plate.  
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The field diffracted by the wedge can be described in the paraxial approximation in terms of 
the Fresnel diffractive integral [1]: 
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where A  is a constant, k  stands for the wavenumber in the free space, and x  and y  are the 

transverse coordinates at the observation plane. 
The field 0  an the initial plane 0z   may be written as 
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where 0w  stands for the beam waist at the plane z = 0, and   and   are the slope angles of the 

wedge sides along the x  and y  axes, respectively. 

After integration we obtain 
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where A  is constant,  1 tanwF n   ,  1 tanwC n   ,  1wk n d    is the phase dif-

ference between the portions of the beam passing respectively though the wedge and the free 
space,  erfc X  is the complimentary error function [9] (    erfc 1 erfX X  , with 
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Rayleigh length in the free space. Besides, we have made use of the integrals (see [10]) 
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Eq. (5) shows that we deal in fact with five principal waves: two waves are reflected by the 
wedge along the x and y directions, one of them passes through the free space, and the remaining 
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two are boundary waves diffracted by the two wedge brinks. Typical diffraction patterns for dif-
ferent wedges (see Fig. 1a, b and c) are shown in Fig. 2 and Fig. 3. Far from the verge of the 
wedge (at 0x y  ), the diffraction pattern is shaped by only three waves: a free propagating 
wave, a reflected one, and a boundary wave diffracted by the wedge brink (at either 0x   or 

0y  ). We observe here two sets of identical optical vortices along the brinks of the wedge. The 

principal condition for shaping a vortex is that the pass-by along a circle of radius 0r  around the 
vortex axis must get the phase incursion equal to 2  [2]. In fact, the boundary wave forms a set of 
parallel lines of equal phases and amplitudes. The two other waves also form a set of such lines 
which are inclined at some angle with respect to the first ones. The vortex is nucleated when the 
amplitudes of these two wave combinations are the same and the phase difference is equal to  . 
However, the mutual tilt of the equiphase lines results in perturbing the vortex form, the vortex 
becoming the elliptical one. In order to flatten the vortex shape, the radius 0r  of the pass-by and 

the beam waist radius 0w  are to be equal to each other [3].  

 
Fig. 2. Distributions of intensity I and phase  after diffraction of the Gaussian beam by the phase wedge with 
the equal angles    between the verges (z = 0.1 mm and 0 1 mmw  ). 

The structure of the beam field near the verge (at 0x y  ) is defined by the phase   and 

the signs of the angles   and   (see the framed patterns in Fig. 2 and Fig. 3). This may be repre-

sented as 
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where we have used the approximation  erfc 1 2 , 1X X X    [9]. 
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Fig. 3. Distributions of intensity I and phase  after diffraction of the Gaussian beam by the phase edge with the 
opposite signs of the angles     between the verges (z = 0.1 mm and 0 1 mmw  ). 

When the phase difference is 0   and the angles are the same (  ), there is no singly 

charged vortex near the axis z = 0. Instead, we observe here two symmetrically positioned optical 
vortices with the same topological charges. However, when the phase difference is   , we 
obtain a single optical vortex near the axis z = 0. On the other hand, when the wedge has the angles 
with different signs    , a single optical vortex is not nucleated under the both conditions 

0   and    (see Fig. 3). Instead, there appears a topological dipole with two oppositely 
charged optical vortices in the vicinity of the verge.  

 

Fig. 4. Spatial evolution of diffracted Gaussian beam by the phase wedge ( 0 1 mmw  ). 

Propagation of the beam is accompanied by essential perturbation of diffraction pattern 
shown in Fig. 4. If we observe the vortex chains along the brinks x and y (see Fig. 4; z = 1 mm) at 
the wave zone, then the vortex chains vanish at the far field (see Fig. 4; z = 5 mm and z = 10 cm). 
At the same time, there appears an additional diffractive image of the wedge in the upper right 
corner. Such an additional image is shaped by the two principal reflected waves (there is no free 
propagating wave there). On the other hand, two boundary waves forms the pattern of short, 
strongly perturbed chains of optical vortices in the vicinity of the verge (x = y = 0) in the lowest 
pattern.  
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3. Slab-sided and combined phase plates 
3.1. Slab-sided phase plate 
An ordinary slab-sided phase plate is a habitual optical element used, as a rule, in optical interfer-
ometers or similar devices for introducing desirable phase differences. However, in our case the 
slab-sided phase plane manifests unusual properties. The diffracted field behind the plate can be 
obtained from Eq. (5) if the angles are equal to 0   : 
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where the relation    is assumed (i.e., we will deal with the  -phase plate later on). We 
obtain 
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A typical pattern for the Gaussian beam diffracted by the verge 0x y   of the  -phase 

plate is shown in Fig. 5. It seems at the first glance that the black lines along the brinks 0x   and 
0y   of the plate are two broken edge dislocations with orthogonal directions and the origin lo-

cated at the point 0x y  . However, the beam field at a small scale (see the framed pictures in 

Fig. 5) turns out to be of a complicated singular structure. There are two short vortex chains near 
the beam axis. The distance between two neighbouring vortices shortens quickly as the coordinates 
along the x and y axes increase. The vortex chains vanish far from the beam axis and the equiphase 
lines smooth gradually out. This means that the  -phase plate can never introduce the exact  
 -phase shift into the beam (i.e., an edge dislocation), even in a purely theoretical case. The latter 
represents a result of the edge effect. 

 

Fig. 5. Distributions of intensity I and phase  after 
diffraction of the Gaussian beam by the  -phase 
plate ( 0    and   ). 

When the beam is propagating, the singular structure does not change, as shown in Fig. 6. 
The observable variations of the field structure for the evolving beam are due to changing trans-
verse field scale, whereas the solid angle of the beam divergence remains constant. In contrast to 
the phase wedge, near the axis of the  -phase plate we observe a structurally stable topological 
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dipole consisting of two oppositely charged optical vortices. The field structure of such a wave 
construction is shown in Fig. 7. One can notice that the study [11] has presented simple experi-
mental results for the Gaussian beam diffracted by the  -phase plate. 

 
Fig. 6. Evolution of singular structure along the Gaussian beam diffracted by the  -phase plate 
( 0 0.5 mmw  ). 

 

Fig. 7. Structurally stable topological dipole generated by the  -phase plate ( 0   , 

0 30 μmw   and 50 μmz  ). 

3.2. Composite phase plate 
As shown above, the  -phase plate introduces two perpendicular cuts in the initial wavefront. 
However, this device cannot make only one  -cut in the beam, though such an operation can be 
performed by a composite slab-sided phase plates shown in Fig. 1d. In this case Eq. (5) may be 
reconstructed to the following form: 
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where j jk h   and 1,2,3,4j  .  

The phase sequence j  enables us to construct a wished shape of the combined phase plate. 

For example, the sequence 1 / 2  , 2 0  , 3 2   and 4    makes only one  -cut in 

the initial wavefront. The corresponding field structure is illustrated by Fig. 8a. Here we have 
again a semblance of the broken edge dislocation at a large scale. However, a likeness of the re-
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stricted edge dislocation turns into a short chain of optical vortices at smaller scales. The singly 
charged optical vortices are positioned near the beam axis. 

 
Fig. 8. Intensity and phase distributions in the beams with the  -cut: the pass-by with  
(a) 2 - and (b)  -phase incursions ( 0 1 mmw   and 100 μmz  ). 

Recently Volyar [12] has suggested an unusual wave construction in the form of a so-called 
optical quark. Such a beam can carry over an optical vortex with half-integer charge at the end of 
the broken edge dislocation. A sum of two quarks with the same signs of their topological indices 
but different parities can form singular beams with integer-order optical vortices, while the differ-
ence of these quarks form non-singular beams. A possible phase device for shaping such an optical 
quark may have the phase sequence 1 / 2  , 2   , 3 0  , and 4 / 4  . The field dis-

tribution at a large scale has much to do with the optical quark (see Fig. 8b), but the field looks 
different at small scales. We meet again a very short vortex chain ( 20 μm  lengthwise at 

100 μmz  ) with the singly charged optical vortex at the end, the vortex being shifted with re-

spect to the beam axis. 
The spatial evolution of the quark-like beam is shown in Fig. 9. As the beam propagates, the 

field structure is essentially reconstructed. The distance between optical vortices in the chain in-
creases whereas the number of the visible vortices decreases.  

 

Fig. 9. Evolution of singular beam with the  -cut and the pass-by   ( 0 1mmw  ). 

In order to find the optimal conditions for shaping the optical quarks, it is necessary to ana-
lyse the structure of the vortex chain. 
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3.3. Structure of the vortex chain 
Let us estimate the size of the vortex chain and the distance between the neighbouring vortices. A 
typical pattern of phase distribution in the vortex chain behind the  -phase plate is shown in 
Fig. 10. The positions of the vortex and the distances between them depend strongly on the posi-
tion z  of the observation plane. Nucleation of vortices in the chain is defined by the superposition 
edge waves diffracted by the x and y edges. The equiphase lines in Fig. 10 appear indirectly near 
the x-edge, though the vortices do not lodge along the straight line, choosing the places corre-
sponding to the same amplitudes and the  -phase difference. For that reason there are no optical 
vortices far from the plate edges. The same reason defines the infinite sizes of the vortex chain: the 
amplitude of one of the waves remains nearly constant, while the amplitude of the other decreases. 
It is the amplitude variations diffracted by the y-edge that result in nucleating the vortex chain 
along the x-edge. The amplitude variations are caused by the error function in Eq. (8). Let us ana-
lyse some properties of that function. Fig. 11 illustrates behaviour of the amplitude and phase of 

the error function  erfy i x  with varying complex argument. The amplitude oscillates near 

the value abs 1y  , whereas the phase difference between the positive and negative values x  is 

equal to  . 

 
Fig. 10. Phase distribution and equiphase lines of vortex chain near the x-edge of the  -phase 
plate ( 0 1mmw   and 0.1mmz  ). 

 

Fig. 11. Amplitude A  and phase   of the error function  erf i x  of complex argument. 

The shape of oscillations of the curve depicted in Fig. 11 means that the error function should 
be written in terms of trigonometric functions. Let us now separate the real and imaginary parts of 
that function. The corresponding relation is as follows [9]: 
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with the Fresnel cosine and sine functions 
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X  being the real variable, and  C X  and  S X  standing for the Fresnel cosine and sine, respec-

tively. 
In its turn, the Fresnel cosine and sine may be expressed in terms of the trigonometric and 

Bessel functions as 
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On the other hand, the Bessel functions of the half-integer order are linked with the spherical Bes-
sel functions nj  by the relation  
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while the spherical Bessel functions may be presented in terms of the elementary trigonometric 
functions (see below): 
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Besides, the definition of the spherical Bessel function is given by 
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This means that the function nj  is expressed by the sum of the trigonometric functions cos
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, where 0,1,2,..., 1m n  . In our case we can restrict ourselves to the simplest estimation, 

so that we put 0n   in the above expression: 
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The error of that estimation is about  3O x . Since we have 
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we obtain from Eq. (19) 
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The second term in Eq. (21) is responsible for the oscillations and, consequently, for the nucleation 
of vortices in the chains in Eq. (10). As a matter of fact, Eq. (12) gives an adequate estimation only 
for 1x   (i.e., far from the beam axis). 

After relevant changes in the notations adopted in Eqs. (11) and (21), we arrive to the expres-
sion  
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By comparing Eq. (22) with the error functions in Eq. (10) and assuming that 0z z  (the paraxial 

approximation at the wave zone) and 1  , we obtain 
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Thus, the oscillations period corresponding to the vortex positions can be estimated as 
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The circles in Fig. 12 outline the distance between the neighbouring vortices in the chain. When 
the number of vortices increases, this distance gets shorter rapidly. However, the vortices do not 
annihilate in this case.  

 

Fig. 12. Distance x  between neighbouring vortices in the 
chain as a function of vortex number m  ( 0.1 mmz  ). 

The theoretical wave approach does not impose any restrictions on the distance between the 
vortices. The physical reason for the restricted vortex chain is caused by a loss of conditions for 



Fadeyeva Tatyana A. 

Ukr. J. Phys. Opt. 2013, Volume 14, Issue 2 68 

the vortex nucleation because of essential difference between the two diffracted waves (the ampli-
tude oscillations of the wave diffracted by the y-edge go down along the x axis as 3x  – see also 
Eq. (23)). Computer simulations testify that the length of the vortex chain at the wave zone is pro-
portional to the square root of the distance z  to the observation plane, just as for the distance be-
tween the vortices given by Eq. (24). 

Rapid shortening of the length of the vortex chain at the edges of the  -phase plate with in-

creasing distance to the observation plane /l z k  enables us to assume that the vortex chains 
would vanish at the near-field zone in the vicinity of the edges. In its turn, it also enables us to 
suppose that the optical quarks [12] can exist at the near-field zone, at least in the evanescent 
waves. However, a consistent analysis of this problem needs absolutely different physical ap-
proaches which go far beyond the scope of our present consideration. 

Conclusions 
In this study we have considered the evolution of the monochromatic Gaussian beam diffracted by 
the corner formed by three verges of the phase wedges of different types, using the paraxial ap-
proximation. When the angles of the wedge are zero, we deal with the ordinary phase plate. The 
structure of the diffracted field is strongly determined by the scale and the position of observer. As 
a rule, all types of the wedges produce chains of the identical optical vortices in the wave zone 
stretching along their edges. However, the properties of the optical vortex being nucleated near the 
wedge angle depend on the wedge parameters. The vortex chains disappear at the far-field zone, 
while a restricted set of the vortices near the wedge angle experiences essential perturbations. The 
fact is that the vortex pattern can be treated as a superposition of five principal local waves: the 
two waves reflected by the upper surface of the wedge, the free propagating wave, and the two 
edge waves diffracted by the wedge brinks. At the far-field zone, the two reflected waves form a 
separate lateral picture and do not take place in shaping the basic pattern, whereas the deformed 
angular vortex pattern inside the basic pattern is shaped by the two edge waves and the freely 
propagating local beam. 

An altogether different situation occurs for the beam diffracted by the phase plate introducing 
the  -phase difference between the portions of the beam. At large scales we observe the field 
with two restricted  -cuts resembling two broken edge dislocations, with the perpendicular direc-
tions connected at the beam axis. However, at small scales (of the order of some microns) there 
appear short vortex chains along the wedge edges, with the singly charged optical vortices of al-
ternating signs. A structurally stable topological dipole is observed at the wedge corner, of which 
shape does not change along the beam length. We have also analysed the field with only one ‘bro-
ken edge dislocation’, with the short vortex chain inside of it produced by the combined phase 
plate. The analysis of the chain structure has testified that the size of the chain is proportional to 
the square root of the distance from the wedge. When approaching the wedge, the chain length 
decreases very quickly and tends to zero. This circumstance makes reasonable the assumption that 
the corner of the  -phase plate may produce the so-called optical quarks in the evanescent waves. 
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Анотація. В рамках параксіального наближення в роботі розглянута еволюція монохро-
матичного гаусівського променя, дифрагованого на куті, сформованому трьома гранями 
клинів різного типу і  -фазової пластинки. Виявлено, що краї фазового клина генерують 
макроскопічний ланцюжок ідентичних оптичних вихорів, які зникають у далекій зоні. Ра-
зом з тим,  -фазова пластинка може репродукувати складну структуру хвильового поля, 
яка залежить від масштабу спостереження. У великих масштабах виникає два  -зрізи, 
які нагадують зламані крайові дислокації з перпендикулярними напрямками. При малих ма-
сштабах (кілька мікрон) два коротких ланцюжки вихорів з протилежними зарядами, які 
зароджуються біля клину. Як випливає з аналізу, розмір ланцюжків швидко зменшується 
при прямуванні до поверхні клину. Це дозволяє нам припустити, що  -фазова пластинка 
може створювати так звані оптичні кварки в еванесцентних хвилях на границі поля.  

 


