Do optical quarks exist in the free space? A scalar treatment.
Volyar Alexander V.

General Physics Department, Taurida National University, Simferopol, Ukraine,
e-mail: volyar@crimea.edu

Received: 13.12.2012

Abstract. We have considered a new type of singular beams called as optical
quarks. They have fractional topological charges being equal to half an integer and
they possess rather unique properties. There are four types of optical quarks, even
and odd ones, which reveal the opposite signs of topological charges. The sums or
differences of the even and odd quarks form standard vortex or non-vortex beams
with the topological charges of integer order. All the quarks in the same beam anni-
hilate and the beam vanishes. The analysis of angular spectra of the optical quarks
shows that the latter represent structurally unstable forms of field under condition of
free-space propagation. We have analysed their propagation properties for different
types of beam envelope, including a symmetric beam array with discrete optical
quarks. We have discussed the properties of possible structurally stable forms of the
quarks and the media capable of maintaining the optical quarks.
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1. Introduction

As far back as in the beginning of 1990s, Soskin et al. [1, 2] have wondered at a ‘strange’ behav-
iour of the simplest singular beams with fractional topological charges. It turns out that the inher-
ent property of such beams is that the initial field distribution is not recovered during propagation
along any beam length, while the optical vortex with a fractional topological charge is not nucle-
ated at any beam cross section. Indeed, a broken axial symmetry of the beam does not permit re-
constructing the propagating field. The immediate inference is that the vortex beams with the frac-
tional topological charges cannot exist in principle. Although such a simple statement does not
need a strong confirmation at all, the work by Berry [3] has ignited a heated discussion. Berry has
considered the process of diffraction for a Gaussian (G) beam by a spiral phase plate with the frac-
tional phase step. The evolution of the diffracted beam manifests itself in the form of beam frac-
ture, with chains of singly charged optical vortices. However, the major point has been that the
beam could carry over a fractional orbital angular momentum (OAM).

An avalanche of subsequent studies has surpassed all imagination (see, e.g., [4—10] and refer-
ences therein). The detailed analysis has shown that the fractional optical vortex splits into an infi-
nite series of integer-order vortices, while the OAM of the beam is defined by contributions of
integer-order optical vortices. Although it seems at the first sight that fractionalising the OAM of
the beam contradicts the foundations of quantum mechanics, the authors of the work [11] have
shown the mixed stated of photons to be able to carry over the fractional OAMs. At the same time,
according to the results [3], the fractional-vortex beam must inevitably be destroyed while propa-
gating, because of different phase velocities of partial elementary beams involved. Nevertheless,
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the recent studies [12, 13] have demonstrated availability of spatially invariant beams with frac-
tional OAMs and, in particular, with fractional optical vortices [12] (so-called erf-G beams).

It is important to stress that we also come upon a pattern of fractional edge dislocations in the
Ahoronov—Bohm effect and in the case of surface waves occurring in a swimming pool above a
sink [14]. Such unusual properties of the fractional-vortex beams compel to peer more attentively
into the structure of spatially invariant fractional-vortex beams. The aim of the present article is to
analyse the structural features of elementary fractional-vortex beams in the free space.

2. erf-G beams as anticipation of optical quarks

2.1. Fundamental quark properties

We have shown in the study [12] that the error function-Gaussian beams (erf-G beams) bearing
optical vortices with the topological charges / =+1/2 belong to the strong solutions of the vector
paraxial wave equation and refer to a set of so-called standard paraxial beams (Hermite—Gaussian
(HG), Laguerre—Gaussian (LG), Bessel-Gaussian (BG), etc.), with a complex argument. In con-
trast to the usual standard beams (e.g., HG, Laguerre (L), G or BG ones), the erf-G beams have a
non-factorising form, i.e. their azimuthal ( ¢ ) and radial ( 7 ) variables are not separated. The scalar

erf-G beam may be written in the form
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N= expk— 2 J , o0=1-iz/zy,and zy = kwy /2. Here wj is the radius of the beam waist at
o

z=0, k the wavenumber, s =1, and the free parameter K can acquire arbitrary values, includ-
ing complex ones. The field distribution given by Eq. (1) depends on the free parameter X .

The intensity and phase distributions shown in Fig. 1 illustrate variations of beam structure
for both the real and imaginary K parameters at the initial plane z= 0. In the case of purely
imaginary K parameter, the field represents a complex set of singly charged optical vortices,
which evolve in a complex manner when propagating. When the K parameter is purely real, the
intensity distribution acquires a C-like shape. The ray along ¢ =0 is something like a broken edge
dislocation that matches two edges of the wave function given by Eq. (1), with different phases in
a one-half optical vortex. Even very small shifts from the initial plane break a spiral-like phase
structure in Fig. 1d, resulting in phase smoothing [12].

Near the beam axis where K r is very small ( K r <<1), the wave function of the erf-G beam

given by Eq. (1) may be presented as
¥ ~2re ' 2NG N2 sin%—isemz/zcosg ) )
Notice that the two terms in Eq. (2) have much to do with the forms of the fractional-vortex

beams suggested by Soskin et al. in the work [1]. Let us write out a generalised form of such wave
constructions at the initial plane z = 0 and outline their basic properties:
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where F (r) is the radial envelope of the standard paraxial beam and m =2m’'+1 is an odd num-
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Fig. 1. Intensity (a, c) and phase (b, d) distributions
for the erf-G beam with w, =35um in the initial

plane z=0:(a, b) K, =i6x10°m™" and (c, d)

(T)\5 T oo ‘-(-')T;”ﬂl K, =6x10°m™
¥y - =6x m .

(d)

An arbitrary non-vortex beam can be presented as a superposition of the wave elements given
by Eqgs. (3)—(6):
F(r)= 05" + 05" or F(r)=—(02" +0,"). (7)

Quite similar, one can define an arbitrary paraxial vortex beam with the odd topological charge:
F(r)e™ =0f" -0 and F(r)e ™ =0 " - 0" . 8)

Correspondingly, the beams with the edge dislocations may be written as

F(r)cos(mp) = (05" = 03" + 0" = 0" | 12, 9)
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F(r)sin(mp) ={ 05" ~ 0" = Op" + 0"} 121 (10)

However, since the vortex beams of high orders are unstable with respect to slight perturbations,
later on we will focus our attention only on the simplest vortex beams with m =+1.

Another basic property is that the sum all the wave constructions given by Egs. (3)—(6) van-
ishes:

05" + 050" + 0" +0,0" = 0. (11
In analogy with the Gell-Mann quark model of hadrons [15], we will call such wave constructions
as optical quarks. In this way the wave constructions Q ;" and Q,;" may be treated as anti-

quarks. Eqs. (7) and (8) can be read such that a superposition of two even and odd quarks or anti-
quarks forms a non-vortex beam, while their difference represents a vortex-beam. At the same
time, the occurrence of all the quarks and anti-quarks results in their total annihilation (see

Eq. (11)).
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Fig. 2. Intensity (/ ) and phase ( @ ) distributions for the optical quark Q@*V'l with a standard en-

velope F(r) = (r/wo )m G.

Typical intensity and phase distributions for the optical quark are shown in Fig. 2. Here a dis-
tinct phase step 7 along the corresponding rays, including the axis » =0, draws attention.

2.2. Angular spectrum of the simplest optical quarks

The propagation properties of the optical quarks are defined by their angular spectral functions

0 2r
k ik -
‘P(kp,¢) =—2”Irdrj do¥(r,p)e reos(o=9) (12)
0o 0

where k, and ¢ are the radial and azimuthal coordinates in the k space, while r and ¢ are the

polar coordinates.
At first we will analyse the angular spectrum of the optical quark with the BG envelope at the
initial plane z = 0, which is represented as

@
— 2 2
- cos%e 2, (Kr)e" (13)
) if ei(p
Since cosEe 2 =——— the spectral integral given by Eq. (12) may be represented as a sum of

two functions:
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¥ (k,.¢) ="V, (k,.0)+ ¥, (k,.0). (14)
The form of the ¥, , functions is defined by the K parameter. If K is real, we obtain

2, 22\, 2
(K +kp)w0}ll(kpl(w§\

4 2 J (15)

where 1, (x) is the modified Bessel function of the first kind and the mth order.

¥, (kp ,¢) = —izoei¢ exp{—

For the imaginary K parameters one finds
K2 —ky)wi | (k,kwd)
( 4P) O}Jl pZWOJ’ (16)

Y, (kp,q}) = zoei¢ exp{

because of the property 1, (ix)=i"J,(x), with J,, (x) being the Bessel function of the first kind

and the mth order.
The second integral is
m
k,wo & T m+3/2)( k{wé\ ( K2
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where the signs ‘+” and ‘-’ refer respectively to real and imaginary K parameters, , F; stands for

the confluent hypergeometric function, and F(x) the gamma-function.
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Fig. 3. Amplitude |‘I’(kp,¢)| (a, b) and phase (D(kp) = arg(‘P(kp,¢)) (c, d) for the optical quark Q;rv’l with

the BG envelope: (a, ¢c) K =i5x10°m ™", wy =10 m and (b,d) K =5x10°m ™", w, =10 m.
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Typical amplitude and phase distributions for the optical quark with the BG envelope are
shown in Fig. 3 for both the real and imaginary K parameters. First of all, these are complex angu-
lar spectra with a series of asymmetrically positioned main directions of the wave propagation.
Second, there are topological dipoles (i.e., two oppositely charged phase screw singularities) in the
k -space phase distributions.

In a similar manner, one can construct the angular spectrum for the optical quarks with the
simplest LG envelope at the z = 0 plane:

ig 2, 2
Y(r,p)= cosZe? (L] e (18)
2 WO

Now we obtain two spectrum functions in Eq. (11) in the form
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Typical features of the angular spectrum for the optical quark with the LG envelope are
shown in Fig. 4. The same as in case of the quark with the BG envelope, we observe a complex
angular spectrum, with the topological dipole present. Availability of energy flux along the axis
k, =0 points to a transformation of structure of the quark along the beam axis. Besides, the topo-
logical dipole in the spectral function presupposes dislocation reactions in the wave structure while

the beam is propagating. The above features are, by all appearances, inherent in either of the stan-
dard types of quark envelope in the free space.
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Fig. 4. Amplitude (|| k and phase (®(k distributions in angular spectrum of the opti-
P )2

cal quark Q:v’l with the LG envelope.

2.3. Free-space propagation of the optical quarks

The detailed propagation process for the paraxial beams can be described in the framework of dif-
fraction integral:

36 Ukr. J. Phys. Opt. 2013, Volume 14, Issue 1



Do optical quarks
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where C is a constant. For the optical quark Q)" we have
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Therefore in the paraxial approximation for the wave zone we obtain
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and M, (x) denoting the Whittaker function. For the simplest case of m = 1 we find
kz, 2
- \/;Wge4z(z+t3zo) §
4(z+iz9)2 . (26)

"
(1 ke rzj I ( kzy rz] L ke 21, [ kzy er o 2etiz)
2Z(Z+iZO) 4z(z+izo) 22(2+izo) 4z(z+izo)

The wavefront transformations in the wave zone for the optical quarks with the simplest LG

envelope are depicted in Fig. 5. A slight shift of the observation plane along the beam axis is ac-
companied by nucleating a chain of singly charged optical vortices with the opposite topological
charges, which appear with increasing length. The field structure is simplified in the far-field zone
(see Fig. 6). The vortex chains are extruded at infinity and the distance between them increases, so
that only one singly charged optical vortex is observed near the beam axis.

Thus, the inner structure of the optical quark with a continuous phase distribution in the cross
section of the beam is such that, whatever the standard envelope of the wave construction, it is
inevitably accompanied by destruction of the quark. However, there are many other non-standard
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forms of the beam envelopes for the paraxial beams, which might nevertheless provide structural
stability of the optical quarks. One of them is discrete optical vortices [16, 17].
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Fig. 5. Evolution of wavefront CD(r,(p,z) for the optical quark Q:Vl with w, =20pm along z

direction in the wave zone.
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Fig. 6. Intensity distributions for the far-field zone.

3. Discrete optical quarks

A new type of screw wavefront singularities is given by discrete optical vortices shaped in the
symmetrical beam arrays [16—19]. The beam array can be constructed in such a way that the field
amplitude near the axis vanishes, thus essentially weakening process of destruction of the optical
quark. Besides, variations of the array’s parameters permit it to be transformed into a so-called
spiral beam [17], a structurally stable wave construction of which shape is recovered up to the
scale and rotation when propagating.
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In our further consideration we will hold to the approach suggested in the study [19]. Let us
consider a symmetric array of the G beams shown in Fig. 7. Each of the G beams is located at the
vertices of the regular polygon (with x,,,y,,z being the local coordinates) at the distance 7, from

the origin of the global reference frame. The z axis of each local beam is tilted by the angle « in

the (y,,z) plane, where x, = x,,,7,,z, are the coordinates.

YA '

P, .
14
ié |

Fig. 7. Geometry of beam array.

The beam coordinates are linked to the coordinates in the global referent frame (x, y,z) :
x, =rcos(p+¢,)+n, y,=rsin(p+e,)-az, z,=arsin(p+¢,)+z, 27)

where we have used the paraxial approximation (sina = ¢ ), » and ¢ are the polar coordinates of

the global referent frame, ¢, = n% , n=0,1,2,...,N—1 is the site of the local beam, and N the

number of local beams in the array. Then the local phase A, , =¢, ¢ and the amplitude f, ,

(with ¢ being an arbitrary real number) are ascribed to each beam. Thus, the scalar field of the
beam array may be obtained in the following form:

2., .2
+
exp {—ik In TV }
2Z —ikz,

1N_1 iA n
p - 28
4 Nn;)f”’qe Z,/(izy) ¢ (28)

with Z, =z, +iz,.
When the number ¢ is integer and f, , =1, the total pass-by of the beam axis changes the

beam phase by 27 g . The beam gets the optical vortex with the topological charge equal to ¢ .

However the phase for the local beams changes step by step rather than continuously. Such a
‘strange’ vortex beam has come to be called a discrete optical vortex [16]. The same situation oc-
curs when g =m/2, where m is an odd number. However, here the phase changes step by step

by the total value zmn/N , whereas the amplitude is cos (%nj or sin (%n} We call these
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structures as discrete optical quarks.

The simplest case of the discrete optical quark formed by the beam array, with all the axes of
the local beams being parallel (a = 0) to the global axis z and f, ,, = cos (% nj Ay = %n R
is shown in Fig. 8 in the initial plane z=0. In contrast to ideal phase patterns of the quark in
Fig. 2, the phase step in this case has a non-uniform shape. Although the phase step remains to be
z far from the axis, the phase gradually reaches the value 7 near the array axis. Besides, we do
not deal hear with the spiral beam and its structure must therefore change as the beam propagates.
Indeed, Fig. 9 demonstrates that the intensity distribution for the optical quark with ¢=5/2
evolves very quickly along the array axis, so that the beam gets a rather regular tracery of singly
charged optical vortices in the far-field zone.

0.3mm

0.10

-04-02 o 02 04
X, mm

: -0.02 0.04 y,mm
x, mm 0.08

g=1/2 g=3/2 g=5/2

Fig. 8. Intensity (/) and phase (® ) distributions for discrete optical quarks with N =100,
w, =20pm, a =0 and r, =0.lmm at z=0.

From the other hand, the beam array turns into the spiral beam under the condition 1) = a z;, at
least for the integer g values [17]. This means that the tilt of the local beams is compensated by

the diffraction process so that the field is recovered up to scaling and rotation. It is just the case
shown in Fig. 10. Here we observe a cylindrical phase plate with @ =0 in the vicinity of the array
axis. The corresponding 7z steps are shifted though they retain a regular form of the step (in con-
trast to what is shown in Fig. 8). The spatial evolution of the optical quark displayed in Fig. 11
represents a destruction process. The shape of the wavefront is gradually deformed, the spiral
beam loses its self-recovering properties in the case of fractional ¢ indices, and the discrete optical
quark is broken down. At the same time, the sum of the even and odd quarks remains to be an in-
variant structure.
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0.3mm 0.6mm 0.75mm

z=20um z=1cm 2cm z=30cm

Fig.9. Spatial evolution of intensity distribution for the discrete optical quark with ¢ =5/2,

N =100, wy =20pm, a =0 and 7, = 0.1lmm

4mm

04 o8

q=1/2 q=3/2 q=5/2

Fig. 10. Discrete quarks in the spiral beam with N =100, 7, = 4mm, o = 0.0008 and
wy =20um at z=0.

4. Conclusions

We have considered a new type of singular beams with the fractional topological charges, which
possess rather unique properties and have been called as the optical quarks. The corresponding
topological charges are half of integer order. There are four types of the optical quarks (even and
odd ones, with the opposite signs of their topological charges). The sums or the differences of the
even and odd quarks form respectively standard vortex or non-vortex beams, with the integer-
order topological charges. All the quarks in the same beam annihilate. The analysis of angular
spectra of the quarks testifies a presence of spectral components directed along the beam axis. This
implies that the wave state of the quark is structurally unstable when the beam is propagating. We
have analysed the propagation properties of the optical beams with different types of standard en-
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velopes, including a symmetric beam array in both arbitrary and self-recovering (spiral-beam)
states. We have revealed that the spiral beams with the half-order indices lose their self-recovering
properties, thus causing a break down of the quark.

z=6mm

Fig. 11. Spatial evolution of optical quark in the spiral beam (q = 1/2).

Destruction of the optical quarks in the free space puts definite restrictions onto the beam
structure and the properties of optical medium capable to preserve the optical quarks. To our opin-
ion, a structurally stable optical quark must represent, first of all, a vector field whose circularly
polarised components have topological charges of half-integer orders differing by a unit value.
Besides, the medium has to reveal birefringent properties, with the principal directions of the rele-
vant tensor forming a field with a fractional topological index.
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Anomauia. Mu po3zensanynu HOBUN Mun CUHRYTAPHUX NYYKI6, HA36AHUL ONMUYHUMU KEAPKAMU.
Bonu maroms 0pobosuii mononoziunuti 3apa0, pieHuil NOJ0BUHI Y020 YUCia i 80100il0Mb YHIKaA-
AbHUMYU enacmugocmamu. Icuye womupu munu onmuyHux Keapxie, napwui i HenapHi, sAKi Maroms
NPOMUNIEHCHUL 3HAK TMONO0I02iuH020 3apady. Cyma abo pisHuysa napHux i HenapHux Keapxis ¢gop-
MYy€ CmaHOapmui 6UXpo6i ab0 HeGUXPOSI NYUKU 3 YIIUM MONO02IYHUM 3apsoom. Bci keapku y
00HOMY T MOMY JHC NPOMEHI AHiciNoIomb. AHANI3 KYMOBUX CNEKMPI8 ONMUYHUX KBAPKI6 3aCBIOUYE,
Wo Keapxu seisiioms co60l0 CMPYKMYPHO Hecmabinvhy opMy nos npu NOWUPEHHI y BLTbHOMY
npocmopi. Mu npoananizyeanu ix eracmugocmi npu NOWUPEHHI PI3SHUX MUNie naKemies, Ku04a0-
YU CUMEMPUYHUTE MACUE NPOMENIE 3 OUCKDEMHUMU ONMUYHUMU Keaprkamu. B pobomi obeosopio-
OMbCS GIACMUBOCHE CIPYKMYPHO CMAOIIbHUX OPM KEapKie i cepedosuuya 30amui niompumy-
6amu ONMUYHI KEAPKU.
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