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Abstract. We discuss interconnections between the depth of spatial inhomogeneity
of energy distribution of the optical fields and the velocity of motion of test particles
for the cases of different light scattering mechanisms during interaction with light.
We suggest an additional tool for determining the degree of coherence of
superposing waves that propagate along mutually orthogonal directions and have
orthogonal polarisations, being linearly polarised in the incidence plane. The use of
velocity of the test particles while estimating the degree of coherence of optical
fields is suggested for the first time.

Keywords: degree of coherence, nanoparticles, Poynting vector, light scattering

PACS: 42.25 Kb
UDC: 535.41

1. Introduction

One of the most urgent tasks of the present-day biomedicine is controlling microparticles and
nanoparticles of different natures with the aid of laser radiation. The objects under control may be
a colloid particle, a molecule, an atom, a cell, or include biological objects (e.g., a DNA molecule
or an organelle cell). It is also tempting to assume that the methods for diagnosing pathologies of
biological tissues, which employ optical methods developed in the work [1], can be greatly
expanded using the techniques for controlling nanoobjects and microoobjects.

One readily understands that technologies of particle manipulation represent a powerful tool
while working with microobjects of different natures. The process of trapping and controlling
particles depends on characteristics of laser beams. At present, a number of techniques relying on
optical beams of various types (Gaussian [2, 3] and bottle [4] beams, zero-order Bessel beams [5],
self-focused laser beams [6], and even evanescent fields [7, 8]) have been explored. One of the
possibilities for controlling micro- and nanoparticles is to use dislocations of wave fronts resulting,
e.g., from interference among the beams with simple wave fronts [9].

A principal prerequisite of efficient particle manipulation using the laser beams is their
complete coherence. In practice, however, any laser field is always coherent only partially [10].
Moreover, a possibility for highly accurate focusing, and then producing a force component
capable to change direction of motion of an object, is determined by the degree of coherence of the
beams [11-12]. For the light beams with high coherence, the optical force may be used to trap a
particle, while the optical force appearing for the light beams with intermediate coherence may be
employed for guiding and accelerating that particle [13].

The aim of this work is to investigate resources contained in the information about the
motion dynamics for nanosize- and microsize particles, when determining the degree of coherence
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of the two superposing mutually orthogonal waves, which propagate along mutually orthogonal
directions and are linearly polarised in the incidence plane.

2. Statement of the problem

At present, optical traps and micromanipulators are created taking into consideration the basic
properties of laser radiation and the condition that different components of the optical force (e. g.,
the components of radiation pressure, the scattering force, and the gradient force [14]) compete
with each other. The scattering force is proportional to the radiation intensity and acts along the
direction of the incident laser beam. The gradient component acts in the direction of the gradient
intensity. These components can create a stable point, which is localised near the focus. If one of
the components is larger or smaller than the other, an equilibrium point is absent and a directional
motion of a particle is observed. The availability of field pressure, which is associated with
internal angular momentum of the field, results in arising of some energy flux, because the
momentum density and the density of the energy flux are interconnected [15]. The momentum of
the field passed on to a particle, causes a movement of that particle.

Calculations of the optical force affecting particles in cases of different light scattering
mechanisms depend on the sizes and properties of those test particles, as well as on the properties
and characteristics of the optical field wherein the particles are localised. As a rule, the following
groups of particles should be distinguished.

1. The particles whose sizes are much smaller than the light wavelength or, according to more

accurate definition, those satisfying the condition r << %0 (with » and A4 denoting

respectively the radius of the particle and the light wavelength). These particles are called as
Rayleigh particles in the literature [16]. Their interaction with electromagnetic waves is
described in the framework of Rayleigh light scattering mechanism. In this case an
approximation of point dipoles may be introduced.

2. The particles with the sizes of the order of A/5. The physical mechanism [16] that determines
interaction of the particles with the optical field is explained in the context of Rayleigh light
scattering approximation, which agrees with a so-called Mie theory. Considerations of each
component of the optical force and calculations of the gradient, scattering and the absorbing
components are typical for the particles of this type.

3. The particles with the sizes of the order of A [17]. To describe interaction of these particles
with the optical field, a generalised Lorenz—Mie theory is applied.

4. The particles whose sizes are 7 >> A [17]. Then the approximation of geometrical optics is
used, based upon the belief that the ray transfers a linear momentum. A transfer of that
momentum from the ray to the particle causes the gradient and scattering components of the
optical force.

It is well known that the instantaneous value S of the Poynting vector is determined by the
relation S = Ex H , where as usual E and H mean the electric and magnetic field strength vectors,

w
\ HEHGE

electromagnetic field energy, ¢ and u are respectively the dielectric permittivity and the

respectively. The density of the energy current is S = EH = , where w stands for the

magnetic permeability, and ¢, and g, denote respectively the vacuum permittivity and the

vacuum permeability. It is known that the relation w= 2w, = 2w, holds true, where the energy
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1
densities wr and wy of the electric and magnetic fields are wy 25880(E,E) and

1 ) . .
wy = ) o (H,H), respectively. The average Poynting vector represents a time-averaged
distribution of the relevant instantaneous values, with averaging over the whole oscillation period.
Let us consider a superposition of two plane waves W1 and W2 of equal amplitudes, which
are polarised in the plane of incidence (see Fig. 1). These waves would determine the averaged
electric (magnetic) energy density and the normal propagation direction of the resulting wave [18,

25].

Fig. 1. Superposition of plane waves which have equal amplitudes and are linearly polarised in the incidence
plane in case of interference angle of 90°. A periodic spatial modulation of polarization [19-21] takes place in
the plane of incidence.

Let EV(r,,¢) (H"(r,,t)) andE® (r,,t) (H(r,,)) be the electric (magnetic) field vectors
for the first and second interacting waves, respectively. The resulting electric (magnetic) field

vector in the detection plane at the point r is defined as E(r)=E"(r)+E®(r)

(H(r)=H®(r)+H?(r)). We will find the direction of the Poynting vector for the resulting
wave as S=S" +SP +EVxH® +E® xH" , where 8, (S”) are the Poynting vectors of the
superposing waves. Since the waves W1 and W2 are propagate along mutually orthogonal

directions in the interference scheme suggested by us, the direction of the resulting vector S is

determined by the direction of the vector obtained when summing over the Poynting vectors s®

and S? of the initial superposing waves.

In order to find the distribution of the volume energy density, we use a matrix approach and
define the mutual coherence matrix describing the field correlation at two different spatial points
r, and r, [22, 23]. It is given by W(r,r,,t) =< Ei")(rl,t)Ej(z)*(rz,t) >, where i,j=ux, z. In this
approximation, the components of degree of mutual coherence of the fields are expressed as
Wi (r.xry,7) Wi (ry,ry,7)

= ) (1)
N (x5, 0)] -t (ry, 15, 0)] \/ZW},-(rl,rl,O)Wjj(rz,rz,O)
ij

(X, 1, 7) =

Let us assume that 7 = 0. This enables estimating the spatial coherence of the optical field.

Now we define the time-averaged density of the energy current at the point of observation r

(see [24]):
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S = g 2 47 0+ 2l O o 0 O feosir ol .+ @)
i.j

where (of/m)(r) =< El.(m)(r,t)E:(m)(r,t) >, m=1,2,i,j=x,z, ai(].l’z) is an argument of 7][(].1’2)

and determines the phase difference between the components i and j of the field, and J, denotes
the phase difference of the beams (here their electrical parts) at the detection plane.

According to Eq. (2), spatial distribution of the time-averaged energy current density
determines the current at different points of the detection plane. It is unambiguously determined by

the degree of coherence of the superposing waves 77(1’2). The direction of the resulting energy

current is set by the directions of the Poynting vectors of these waves.

When accounting for superposition of our mutually orthogonal linearly polarised fields, a
modulation of the averaged Poynting vector magnitude, i.e. a spatial modulation of the energy
density, is noticed in the observation plane. The optical force associated with the Poynting vector
forms some distribution of particles in this plane. Moreover, any change in the degree of coherence
would lead to changing modulation depth of the volume energy density. In its turn, this would
determine the optical force and so the peculiarities of motion of the particle.

As stated before, the forces resulting from the laser beam and influencing the particles
depend in general on the properties of both the beam and those particles. Further on, we will
consider the behaviour of test particles in an inhomogeneous optical field. According to the
experiment suggested in the study [25], these are the particles peculiar for the golden hydrosol (of
about 1 nm and 100 nm in size; considered at the room temperature). The mechanical influence of
spin flows [26, 27] on the motion of these particles is not dealt with hereafter. Let us analyse

formation of the optical force F,, that affects the particles.

The direction of gradient component of the optical force is related to spatial distribution
gradient of the volume energy density. The directions of the scattering and the absorbing
components are given by the direction of the energy flow propagation. At the same time, the
direction of the reflecting component depends on orientation of the particles’ surfaces.

Basing on the polarisability a =a'+ia" of the molecule, one can calculate the gradient
. 1 . . o
component of the optical force as F,,,y = —Ena’VE 2 (with n being the refractive index of a sur-

rounding medium). The molecular polarisability @ can be derived from the Clausius—Mossoti

g, —¢

equation (a =3V —2—"- with €, and &, being the dielectric permittivities of the gold
e, +2e,

particle and the surrounding medium, respectively). For the golden particles in water we have

n =0.32 +2.65i [28], where both the real and imaginary parts of the dielectric permittivity are be

calculated using the Kramers—Kronig relations.

c e
It is known that S = 4— ZE% , where § is the unit vector of the propagation direction [29]
T\H

4
and S = < EE2 . Then we obtain E* = LS\/Z and so
4\ u c Ve
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Fyrad = L avE? - —M\/sz . 3)
2 c €

Thus, one can easily find the field gradient for the general case. The gradient of an arbitrary
function can be calculated at any point of the plane, including the observation plane. It is also
known that the modulus of the gradient of any function is equal to the greatest rate of changes of
that function at the chosen point. Therefore it is feasible to calculate the gradient distribution of the

-0S -0S
volume energy density as VS =i 5_ + ka—, assuming that a distribution of the energy density
X z

takes place in the plane xz.
Let the coordinates of the point in the region of the minimal volume energy density be x,,

and z,, . In order to define the gradient VS at the arbitrary point m with the coordinates x, and

min

z in the observation plane, the remoteness of the given point relative to the nearest point is

marked off in the minimal energy region. We preset some shift of the coordinates of the given
point with respect to the coordinates of the point inside the minimal energy region. Then one can
write the following expression for the point m:

2 2 2
AS
" 0ox,, 0z, Ax,,

[ﬂ]zz Lo, 1
Az, "\(Ax,)? (Az,)?

where Ax, =x. —x,, Az, =z . —z ,AS, =8 -S,,and
EE
Siin = ﬁZ{«ﬁ;‘)(r)wﬁ (r) =2/l (5,1, O) U (1,1, 0)] - ) | &)
i,j
EE
S = ﬁz{@‘knwy) () + 24l 1y 1y, Ol 1y, 1, O)] 7 c08( (8, )1 - )
i,j

As a result, one gets

EE &
AS,, = =2 |25 JuW (x5, )t (x5, 0)] 17 (1= cos[(8,),,, ) = ;szn;-]’” -(6)
0 i

Here K, =-2 ’8—0\/tr[W(r1,rl,O)]tr[W(rz,rz,O)] (1-cos[(d,),,]) represents the parameter that
Hy

characterisers the energy density for the chosen point m of the optical field. It depends on the
phase difference between the initial waves at this point. Let us write out the main result:

&
AS,, = \/gKm 2. (7)

Following from this expression, one can represent the gradient component of the optical force as

_ 2wna’ (1,2) 1 1
(Fgrad)m = K MJFM ®)

The effect of the gradient force is linked to the degree of coherence of the interacting fields.
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According to the results [16], one can define the scattering and the absorbing components of

the optical force in the frame of the Rayleigh approximation as

4
n k 2
Fscat - scats Cscat = 2 |0£| ’ k = 27[/)“ ’ (9)
C 80
ke
Fups abss C |a | (10)
‘90
Thus, we obtain
Fopt Fgrad + Fscat + Fabs . (1 1)

Depending on the relationships among the gradient, scattering or the absorbing components
of the optical force, the particles are either trapped by the field or they move in the direction
defined by the energy flow.

Suppose that the particles under analysis are situated in a viscous medium. Let us also
assume that a mixture consists of a viscous incompressible carrier phase (see [30]) and spherical
particles with the radius » and the mass M. When moving in the liquid, the particles experience a
friction force. If the velocity v remains constant, the force is determined by the Stokes law

(F,, = Bv = 6mnrv , where B means the friction coefficient for the particle, # the viscosity of the
dispersive medium). Then the equation of motion of the particle under the optical force in the

viscous medium will be as follows:

dv
M— i =F,, +F,
In the first approximation we ignore the Brownian motion of the particles and suppose them to be
motionless until being brought into the optical field.
Let us consider the particle m with the mass M and the radius r, which is located at the field

point with the coordinates x, and z, . When solving the differential equation of motion written in

the scalar form,

1 1
M= = —6mmry -2 a'K, 0" ot +{Cy + Coa} S, (12)
c (Ax,)”  (Az,) c
we obtain
6mnr
1 - t 27n (1,2) 1 1

v,()=—(e M +1)x{—a'K Y |——+
m M ¢ " (Ax,))?  (Az,)? (13)

~{Cats + Cuaar) [ S @0+ 457 0+ 2l . O o 1 O ”cos[(ée)m]}}
Ho

As seen from this formula, the velocity v, (f) of each separate particle depends upon its

position in the optical field.
Now we perform averaging over the ensemble of particles localised in the optical field. The
velocity of motion of m particles averaged over their ensemble may be written as
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1 67”7"‘ 1 2

— - n ., 1,2)
T =—( M 1Dxi=S g’k i
® M( ) {m Em . m

1 1
7_‘_
(Ax,)*  (Az,)? (14)

—;Z{{cabs + Cocan Z\/ﬁ {9870+ 447 )+ 24l (o1 OYJTH (13, 001 Veos((8,) 1}}
m L]

In other words, the degree of mutual coherence affects the averaged velocity of the particle in the
optical field.

To obtain a direct link between the averaged velocity of the test particles and the degree of
coherence of the superposing fields, we should concentrate on some particular example of the test
particles. Let the light scattering peculiar for those particles be described by the Rayleigh
mechanism, whereas the scattering and the absorbing components of the optical force affecting
them be much smaller than the gradient component. Then the averaged velocity of the
nanoparticles in the optical field (or, more precisely, the velocity of trapping by the field) is
determined by the degree of mutual coherence of the superposing fields:

6nr
- t 2 1 1 1
vm=$wﬂfﬂrﬂ%%m—2&4 (15)

c m (m%f+m%f'

m

Normalising the temporal changes in the averaged velocity to the maximum of trapping
velocity for each corresponding moment of time, which would have been obtained for the case of
absolutely coherent fields, we get

V() =n"7. (16)

Hence, the relative average velocity of the particles of nanometre-range sizes, which move in
the optical field with spatially inhomogeneous energy resulted from interaction of partially
coherent optical fields converging at the angle of 90°, makes estimating the degree of mutual
coherence of these fields really possible.

3. Results of simulation

Using the methods suggested in the studies [18, 22, 25], one can illustrate the motion of particles
of various sizes in the optical fields formed by superpositions of coherent or partially coherent
beams. For receiving a more complete and vivid picture of the particle motion, it is also necessary
to take into consideration a set of forces resulted from the liquid in which the particles are
maintained in suspension. The behaviour of the test particles has been simulated without
considering random Brownian forces which, as shown in the work [31], mask the information
about the optical field and the corresponding coherence properties.

The optical field, in which we observe the motion of particles of different natures, is a result
of the two plane waves with different degrees of coherence interacting in the interference
geometry suggested above. Though a homogeneous intensity distribution is observed in the plane
where the resulting field is detected, the spatial distribution of the Poynting vector can acquire
inhomogeneous character and depend essentially upon the degree of coherence of the interacting
beams.

Let us reproduce a full pattern of motion of the particle in the optical field. Essential
polarisability of the golden particles and availability of absorption determine the following
features of the motion: (i) spatial redistribution of particles among the regions of maxima and
minima in the energy-inhomogeneous optical field, which is caused by action of the optical field,
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and (ii) further behaviour of the particles according to their sizes and the relations among the
components of the optical force. The initial conditions determine a distribution of the particles
over their velocities in the beginning of the motion (at the initial moments of time). Therefore the
resulting optical force and the overall force that governs the motion of the particles are due to their
location. The distributions of the average magnitudes of the Poynting vector presented in Movies
2, 3 and 4 have been simulated using Eq. (2).

Movie 2 and Fig. 2 illustrate the motion of 100 nm sized particles in the homogeneous vector
optical field. Here the arrows indicate directions of the Poynting vector in the observation plane.
The obtained distribution of the volume energy density is a result of incoherent interaction of the
plane waves when there is no spatial modulation of polarization in the observation plane. As
suggested by works [15, 16], then the modulation of the Poynting vector is absent too. The
gradient component of the optical force caused by the gradient of the Poynting vector magnitude
(i.e., the gradient of the volume energy density) does not change the direction of motion and the
force gradient component is absent in this case.

The motion of the particle in our situation is governed by a resulting force caused by the
scattering and absorbing components of the optical force, which is closely linked to the radiation
pressure and the viscous friction in the liquid. The particle moves along the direction of energy
current propagation in the detection plane. The velocity of the particle depends on the relationship
between the field impulse and the viscous friction force.
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Fig. 2. Motion of particles with the sizes of about 100 nm in a homogeneous vector optical field.
See also Movie 2 (format avi, 1.98 Mb ).

Accounting for essential light absorption by the golden particles determines the direction of
the resulting optical force. The absorption component becomes important for the particles of the
size chosen by us and increasing size of the particle increases importance of that component. We
can change the depth of energy inhomogeneity of the optical field by changing the degree of
coherence of the interacting waves.

Movie 3 and Fig. 3 show the pattern of motion in the field formed by superposition of two
partially coherent waves, with the degree of coherence 0.5. Modulations of both the polarization
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and the volume energy density are seen in the observation plane, thus leading to the gradient
component of the optical force. Since the gradient force is rather small when compared to the other
two components of the optical force, its value is not enough to capture the particles. As a result,
the particles move towards the region of potential energy minimum, according to the main laws of
thermodynamics. The corresponding zones are localised in the region of Poynting vector minimum
value .

Eo i e R R T i IR NGRE ot A 0  SRS i RIIR o
BLELPPPPCCPIPLIICIPPLLCIPPPLIECIPPRETIIPP s pp)
PERIPRP L PPRP I PPPPIE I PRPP PR P PG PRR P PR
ORI L SRR L L L PR PA AL PP RS PP LR PP Lo PR
LER PR CRBPR LS LSRR GPPPL AP RPREE CLPRP AL PPPT
Y S Y N Ry R Ry
PRI CIPRP G C b PEP L S P PEP P LI PPP P S IPEP L IPPP I PR
PP CEPPP PO P PRI A PPRI L PPPR PP p PRy bR
Lot ie B R P LA PP PA A RPPECLE PRSP R PP E PP R PR
COAPPRP P PRP O I PEPP PRI PPp P RPPpR PPl
B Y R R Y N R Y Y Ry Y Y N YRRy Y YV
LERPP S IRPP G EEBE S B EREP IS PRPELE T LEPR S L PPEL L
Y R DT Ry N Ry Y YRRy Ry Y Yy
PLOLLPRP P PPRL QPRI CCPPPP L PPR L Ppps PP
PO LPEP L RPEP P IPP PP pprrrpppr et pppr s p o,
LELPRPI PRI P RRBR LSS PPP ARD A L PPEL L AD PP
SEPEP L LPERP QPRI PP Ep S J XSRS R R e
PAB P o pp P e pp s pp CERRp s ppppe s
PRECCPEP P I PREPr I PP b A A
Vi aba il e Sl & U N Bl i > ?”""If/"f)’
g e o i e g s L EPEr L PPPS
PR Y Y DY Y YRRy Y R ,,.,,,),,.,,},,
R Y R Y Y Y Y ,,,,',,,,”,,,,,f,,.
CRRRLC EPRPL AL PP PP S PEPPPP PP Pt
,,;f;r,,,,;;,,,,,;,,,,iﬁﬁ crppr e s pp R s
Py At s et o i o l" I SR e o
R R Ry o Y RNy Y Ry Y Y Y R Y Ry Y]
LCTPRPL O CPPRLP LT EPRE T A RRRELTTEPPL L TERLE G BRE
B Y Ry Y Y N Y
CARP A LE R PP G LG REC LR CER PSR R A A
BRPPCCIPRPPCIPPP e e p PP rccppp b s b b PP RO LPPRI s
PRLE L CRJRLCERPRE T PREL PR L L PER LS CPEP LT,
e L SRS Y R O TS T P S o o
PR Y YRy VY Ry YV R YV VRSP VRN P Y Y YRR YV
COEPRP I CEIPPP I IIPPP I CRPR PP PRIt P pRPr I pppr
R R ) I R I S S Y Y
D Y N
PARP L PRI PPRL IO EPPE S L ERRE PRI PRSI
B Py Y A A
R O R ¥ N e R 7 ey 3 3
LRV Y DY A RREY VN EREY Y S S RS
SAPPP L T IPRE L P PRP O PP AL TPPPS R PRL AP PP
L Y R N Ry Y Wy S Ry VR Y R Y Y RS
P N Y N S O N R R S Y Ry Y Y
PRE PRI CIPPP O IPEP L L LPPPICOPERLCCIPRP TP
»o vr,))a**)))" PR Y R Y Y Ry Y R YRRy
P LIPS S APPPE L PPPIR L EPEP L L PREPEC I PRP L PP
IR Y Y Ry Y Y Ry Y Y Ry Y Y N RRP Y Ry Y Ry Y R
LAAMAT CIRBL AT RRBP L EPRRL T CRBRLE L CLEBN TS ERERT L

Fig. 3. Motion of particles in a field formed by superposition of two partially coherent waves
characterised with the degree of coherence 0.5. See also Movie 3 (format avi, 1.7 Mb).

The particles continue to move under the force, whose components are the scattering and
absorbing components of the optical force and the viscous friction force. The results of our
simulations fully justify the results of the experiment suggested in the work [25]. At the same time,
the information about the gradient force associated with the gradient volume density and the
degree of coherence of the superposing fields, is lost in the general pattern of particle motion.

Thus, in order to estimate quantitatively the degree of inhomogeneity of the optical field, one
should choose the particles for which the gradient component of the optical force represents a
determinative factor. Let us analyse the behaviour of particles with the sizes of about 1 nm.
According to the light scattering theory, it is precisely these particles that are considered as point
ones and can be called as Rayleigh particles. As the simulation results demonstrate, the gradient
force in this case gets much larger than the other components of the resulting optical force. That is
why the field gradient can move the particles into the region of the maximum where trapping takes
place (see Movie 4 and Fig. 4).

It is worthwhile that the optical field does not influence the particles whenever the
homogeneous optical field results from incoherent interaction of the two superposing fields (i.e.,
the distribution gradient of the energy is absent).

Deeper modulation depths of the volume energy density correspond to higher degrees of
coherence and, consequently, the degree of inhomogeneity of the optical field energy increases.
Then the influence of the gradient component of the optical force increases, too (see Fig. 5). The
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resulting optical force has been calculated using Eq. (11). In the first approximation, the particles
are considered to be motionless at the initial moment. Graphical representations of the optical

force in Fig. 5 have been obtained after normalising the force at a certain moment of time to the

magnitude obtained as if absolutely coherent fields interacted at the same moment.

ceppEe

Fig. 4. Motion of particles with the sizes of about 1 nm in a vector optical field characterised with
the maximal gradient. See also Movie 4 (format avi, 414 kb).

Now the transverse component of the optical force is sufficient to trap nanoparticles and keep

them in a ‘capture’ zone. Depending upon the initial positions of the nanoparticles, the velocities

of their trapping by the field are different. These velocities are also affected by the volume energy

density gradient.
1.0
08}
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044"

Force, arbitrary units

Time, sec

Fig. 5. Changes in optical force affecting the
Rayleigh particles observed with time and

changing degree 11(]’2) of coherence of the

interacting waves: the legend shows degrees
of coherence that correspond to different
curves.

The velocity of the nanoparticles depends on the spatial distribution of volume energy

density in the observation plane and, accordingly, on the degree of coherence of the superposing
waves. Changes in the degree of coherence cause changing velocity of redistribution of the

particles in the optical field under the effect of optical forces that trap them (see Fig. 6). The

192

Ukr. J. Phys. Opt. 2012, V13, Ne4



Use of motion

velocity graphs presented in Fig. 6 are derived from Eq. (16). They describe normalised averaged

velocities of the particles.
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= s:_\._"_'__ : . . | waves: the legend shows degrees of
0.10 0.15 0.20 0.25 coherence that correspond to different

Time, sec curves.

The maximal velocity and, correspondingly, the maximal resulting force are unequivocally
related to the degree of coherence of the superposing initial beams, which form the optical field
under study. For instance, the maximal velocity of the particles is 0.8 (see Fig. 3) provided that the
degree of coherence is equal to 0.8. Any changes in the degree of coherence of the superposing
waves would change both the average velocity and the maximal velocity of particle ‘trapping’ in
the maximal energy region of the field under analysis. For instance, the maximal velocity 0.5 of
particle ‘trapping’ corresponds to the degree of coherence 0.5.

As our computer simulation results testify, the particles are practically immediately ‘trapped’
inside the region of maximal gradient of the Poynting vector. As a result, the maximal velocity is
achieved in the initial moments of time. At the same time, the nanoparticles possess some masses
and so are characterised with some, to say, insignificant inertia. Because of this, a certain time, a
period of ‘relaxation’ after ‘trapping’, is necessary for the particles to take their stable positions.
This is attributed to (i) progressive decrease in the velocity after ‘trapping’ and (ii) the fact that the
maximal velocity is chosen as an estimation criterion for the field imhomogeneity gradient and,
consequently, for the degree of coherence.

Hence, the optical force, which causes trapping of the particles by the field, and the velocity
of the latter are directly linked to the degree of coherence of the interacting optical fields. Then the
velocity, being an easily measured quantity, may be chosen as an estimation parameter of the
degree of coherence of the interacting fields.

4. Conclusions

In this paper we have suggested another instrument for estimating the degree of coherence of
linearly polarised optical waves propagating along orthogonal directions. Namely, we have
substantiated theoretically that the maximal normalised averaged velocity of a particle moving in
the fields unambiguously corresponds to the degree of mutual coherence of the fields under
analysis.

We have investigated the influence of degree of coherence of the mutually orthogonal waves
, which are linearly polarised in the incidence plane, on the velocity of test nanoparticles. It has
been shown that the spatial modulation of light polarization in the incidence plane causes spatial
modulation of the volume energy density and changes in the gradient, scattering and the absorbing
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components of the resulting optical force that affects the test particles. As a consequence, the

velocity of the nanosize particles can serve as a tool for determining the degree of coherence of the

superposing waves.
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Anomayia. Y pobomi 062080peno 63a€M036’A30K Midc 2MUOUHOIO NPOCMOPOBO20 PO3NOOINY
eHepeii onmuuHo20 NoNA 1 WEUOKICMIO PYXy NPOOHUX 4aACMUHOK RidYac ixwvboi 63aemo0ii 3i
CGIMNOM 34 YMO8 DI3HUX MEeXAHI3MI8 PO3CIAHHA c8imaa. 3anponoHosano 000amKo8uil cnocio
BUBHAYEHHA CMYNEHS KO2EPeHMHOCMI X6Ulb, AKI iHmep@epyioms, NOWUPIOIOYUCL ) B3AEMHO
OPMOCOHANILHUX HANPAMKAX, I OPMOSOHANbHO-NIHIUHO NOAAPU308AHI 6 NIOWUHI NAOIHHA.
Buxopucmanns weuokocmi pyxy npoOHUX HACMUMOK O OYIHKU CMYNeHA KO2epeHmHOCmi
NpPONOHYEMbCA 6nepule.
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