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Abstract. A theory of quasi-stationary spectrum of electrons interacting with elec-
tromagnetic field of arbitrary intensity in an open two-barrier resonance tunnel 
structure is developed using exact solution of the complete Schrödinger equation. It 
is shown that, besides the quasi-stationary electronic states having usual resonance 
energies and widths, additional satellite quasi-stationary states appear in the spec-
trum, with their resonance energies located near the resonance energies of every of 
the quasi-stationary states at the distances being multiples of an energy fixed by the 
electromagnetic field frequency. 
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1. Introduction 
There has been a surge in investigations of spectra of electrons interacting with electromagnetic 
fields in resonance tunnel structures (RTSs) with different geometrical designs after creation of 
first quantum cascade lasers by Faist and Capasso with co-authors [1, 2] and, further, quantum 
cascade detectors [3, 4]. The RTSs are basic elements of these nanodevices, having unique physi-
cal characteristics and operating in the actual terahertz frequency range. 

A theory of electronic currents interacting with electromagnetic field in the RTSs regarded as 
open nanosystems appears to be rather complicated, even for relatively simple models with δ-like 
potential barriers. In the majority of the relevant theoretical papers [5–9], a so-called small signal 
approximation has been used. In its frames, only terms linear in the electric intensity of electro-
magnetic field are maintained in the Hamiltonian and the wave functions. In essence, the perme-
ability coefficient of an RTS and, since, the spectral parameters of quasi-stationary states (QSSs) 
have been studied in the abovementioned papers within the first approximation of the perturbation 
theory dependent on time. 

In order to take into account the influence of the intensity of high-frequency fields on the 
spectrum of electrons and their tunnelling through the RTSs, the frames of the perturbation theory 
have been abandoned for the model of two-level systems, using the approximation of iteration 
method (see the earlier papers [10, 11] and those published recently [12]). In these papers, one can 
see no terms quadratic in the field intensity term in the Hamiltonian, though it is essential for 
strong enough fields and, therefore, so must be taken into account in the wave function, together 
with the other terms of higher orders in the field, which are produced by linear interaction. 

Within the two-level approximation and under the condition of equal resonance widths of the 
two QSSs between which the quantum transition happens, the author of Ref. [12] has established 
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that, under the influence of strong electromagnetic field when the electronic current flows through 
the two-barrier RTS, the two transparent canals are observed at the energies essentially different 
from the resonance ones. Nonetheless, the nature of these QSSs has not been explained. Moreover, 
the condition of strict equality of the resonance widths cannot be satisfied, even for the neighbour-
ing QSSs in the two-barrier RTS. 

In the present study we develop a consistent quantum-mechanical theory of electronic trans-
port through the two-barrier RTSs under the influence of high-frequency electromagnetic field 
with an arbitrary magnitude of electric intensity, which is exactly taken into consideration both in 
the Hamiltonian of the system and in the wave functions. This has allowed studying the evolution 
of quasi-stationary spectra of electrons interacting with the high-frequency electromagnetic field 
and the permeability of the two-barrier RTSs that depends on the frequency and intensity of this 
field. We have shown that the interaction between the electrons and the electromagnetic field 
causes arising of satellite QSSs, with all the field harmonics appearing near all of the electron 
QSSs observed without the field. 

2. Permeability coefficient for the two-barrier RTS in high-frequency  
electromagnetic field 
A plane, open and symmetric two-barrier RTS (see Fig. 1) is studied here which is subjected to 
homogeneous high-frequency electromagnetic field with the frequency   and the electric inten-
sity  .  

 
Fig. 1. Energetic scheme for electrons put into a two-barrier RTS. 

Let a mono-energetic current of uncoupling electrons (we will only deal with the one-electron 
problem further on), with the energy Е, fall on the RTS. It will move along a z axis perpendicular 
to the RTS planes from the left side. The complete Schrödinger equation for this one-dimensional 
motion in a quasi-static electromagnetic field is written as 
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Here, the Hamiltonian of the system contains the electron kinetic energy (the first term), the elec-
tron potential energy written in a typical δ-barrier approximation (see [5–12]), 
   ( ) ( ) ( )U z U z z b     ,  (2) 

the potential energy of the electron interacting with the electromagnetic field, 
  ( , ) 2 cos( t) (z)- ( - ) ( - )H z t e z z b b z b      ,  (3) 

and the potential energy of the field (the last term). Concerning the notation, e and m are respec-
tively the mass and charge of electron, U and Δ respectively the height and the width of potential 
barriers of the two-barrier RTS, and θ(z) the Heaviside step function. 



Tkach М. V. et al 

Ukr. J. Phys. Opt. 2012, V13, №1 38 

Eq. (1) has the exact solution given by different analytical expressions in different intervals of 
the z variable: 
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Here we have introduced the convenient denotations for the constant parameters and those de-
pendent on time: 
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The wave function ),,,( tzE   may be expressed as a Fourier series over all the harmonics 

of the main frequency   of the field: 
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with the known coefficients 
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Now, using the wave function ),,,( tzE   given by Eq. (6) and making the replacement 

pEE  , we obtain the wave functions ),,,( tzpE   that describe the electron states 

with the energies pE   ( ...2  ,1 p ): 
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  1 2 ( )pk m E p    .  (12) 

Here we have accounted for that the electrons got inside the two-barrier RTS into the state with the 
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energy Е transit to all the states with the energies pE  , due to interaction with the electro-

magnetic field. The electrons can leave these states while only leaving the nanostructure. 
Now, the complete wave function may be written as a linear superposition of the electron 

wave functions in the states with all of the possible energies pE   ( ,...1 ,0 p ): 
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where the ),,,( tzpE   functions are specified by Eqs. (6) and (10) and the unknown coef-

ficients ,...1pC , along with pA 2,1,0  and pB 1,0  ones, are determined by the continuity conditions for 

the wave functions and their current densities at the interfaces between the media written for every 
harmonics and for any moment of time t: 
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Due to orthonormality of the harmonics, from the system of Eqs. (14) we obtain the system of 
infinite number of equations for the unknown coefficients. Restricting the system by rather arbi-

trarily large, though finite, number of positive ( N ) and negative ( N ) harmonics and consider-
ing that the number of the negative harmonics is confined only by the number of so-called open 

canals, which satisfy the condition ]/[ 0 N , we get the finite system of )1(4   NN  

equations concerned with the same number of coefficients: 
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They determine the complete wave function in terms of  the functions corresponding to the waves 
that move to the right ( ) or left ( ), with respect to the primary direction. Finally, we obtain 

  

 0

0 0
[ ( ) ]

, ,1 1

2

( , , , ) [ ( , , , ) ( , , , )]

( ),                       0

 ,     0

.                         

p p

p p

p p

p

N

p N
ik z ik zp p

n
ik z ik zp pi n p t

k n k n
n

ik zp
n

E z t E p z t E p z t

a f e g e z

e f b e g b e z b

c f e

 

    




 






  




      

 

   





 

                 

N

p N
z b









 


 (16) 

It is clear that the law of preservation for the complete current density through the all open ca-
nals must be fulfilled inside the system: 
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where )0,,( EJ  ,  ( , ,0)J E n      and  ( , , )J E n b     are respectively the densities of 

the falling current, the reflected one and that which has penetrated through the open canals of the 
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two-barrier RTS. They are given by the expression 
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Now, the complete permeability coefficient for the two-barrier RTS can be expressed as a sum 
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describing the probability of the event that the current with the energy Е falling at the RTS would 
exit the nanostructure through the pth open canal with the energy pE  . 

The permeability coefficient for the two-barrier RTS obtained by us and given by Eq. (19) 
enables specify the main QSS and an arbitrary number of the satellite QSSs of electrons interacting 
with the high-frequency electromagnetic field. 

3. Properties of quasi-stationary electron spectrum of the two-barrier RTS under 
the influence of electromagnetic field 
Using the theory developed above, we have calculated the permeability coefficient for 
In0.52Al0.48As/In0.53Ga0.47Аs a two-barrier RTS, which is often investigated experimentally. Its 
physical and geometrical parameters are as follows: 0.043 em m , 516 meVU  , 18 nmb  , 
and nm 9 . 

The results of calculations for the permeability coefficient D as a function of the electron en-
ergy Е at different magnitudes of non-resonant electromagnetic field energies     are shown 
in Fig. 2 for different magnitudes of shift energies acU e b  caused by the electric intensity   
of this high-frequency field. It is clear from the inset of Fig. 2а that, if the interaction with the elec-
tromagnetic field is absent, the main electron states are quasi-stationary. The spectrum is charac-
terised by the resonance energies nE  and the widths nГ  determined, as it is known, by the posi-
tion of maxima and the widths of nth Lorentzian curves, respectively. 

The interaction between the electron and the electromagnetic field of an arbitrary (even 
small) intensity   and energy   causes the appearance of satellite QSSs, with the resonance 

energies  pEE nn p )(  (   NpN ) located near every of the main states with the reso-

nance energies nE . 
From Fig. 2 one can see that the maxima of the permeability coefficient for the high-  

(n, p = 1, 2, ...) and low-frequency (n, p = –1, –2, ...) non-resonance satellite QSSs of any of the 
n th main QSSs decrease when the order number p increases, irrespective of the intensity   or the 
equivalent energy shift acU  and the field energy  . When the resonance energy (n, p) of the sat-

ellite QSS gets into resonance with the resonance energy of the n th QSS (for example, 

31 2 EE   – see Fig. 2b), the permeability coefficient of this satellite QSS sharply increases 

and can become larger than that for the satellite states with smaller frequencies 
( )()2( 11  EDED ).  
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The shape of dependence of the permeability coefficient of the non-resonance satellite QSSs 
(extracted with the accuracy up to some background level) upon the energy is quasi-Lorentzian 
(see, e.g., the inset of Fig. 2с). The shape of the permeability coefficient in the vicinity of an arbi-
trary resonance main QSSs and the satellite QSSs is determined by a non-Lorentzian function. It 
depends essentially on the field energy   and the electron energy Е at a fixed electric intensity 
( or acU ). 

Fig. 3 displays dependences of the permeability coefficient on the electron energy at three 
fixed electromagnetic field energies for the vicinity of the energies of the second main QSS reso-
nating with the first low-frequency satellite of the third main QSS (Fig. 3а) and for the vicinity of 
the energies of the third main QSS resonating with the first high-frequency satellite of the second 
main QSS (Fig. 3b). They are calculated for the electric intensity corresponding to the energy shift 

meV 5acU . 
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Fig. 3. Dependences of permeability coefficient D on the electron energy Е for the cases when the electromag-
netic field energy Ω is close to the difference between the energies of the third and the second QSSs in the 
vicinity of the second QSS (а) and the third QSS (b). Calculations are performed for Uac = 5 meV. 

 

One can see from Fig. 3 that, if the field energy is slightly smaller than the resonance one 
(=132 meV<E3 – E2=129 meV), the resonance energy of the first low-frequency satellite of the 
third QSS ( )1(3 E ) is situated in the high-frequency region near the resonance energy of the second 

QSS (E2). At the same time, the resonance energy of the first high-frequency satellite of the second 
QSS ( ( 1)2E  ) is situated in the low-frequency region near the resonance energy of the third QSS 

(E3). If the field energy is slightly larger than the resonance one  
(=132 meV>E3 – E2=129 meV), the resonance energies of the satellite QSSs are situated in the 
low-frequency region of the second QSS and the high-frequency region of the third QSS, respec-
tively. In the both cases the magnitudes of the satellite peaks of the permeability coefficient are 
smaller than the peaks of the corresponding main QSSs. 

If the field energy is equal to the difference between the resonance energies of third and sec-
ond QSS ( meV 129 ), then the permeability coefficient has a shape of two-humped curve 

with almost equal maxima in the vicinity of the both resonance energies ( meV 1032 E  and 

meV 2323 E ). The both pairs of the QSSs are complex states corresponding to the electron in 

the second main state (with the energy 2E ) bound with the first satellite state of the third QSS 
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(with the energy 3E ), Fig. 3b, and in the third main state (with the energy 3E ) bound with the 

first satellite state of the second QSS (with the energy 2E ), Fig. 3а. 

Thus, the arbitrary pairs of double peaks, which appear in the dependences of the permeability 
coefficient on the electron energy and are located in the vicinities of the main resonance energies 
of the nth and n th QSSs represent manifestations of complex QSSs arising due to superposition 
of the main nth state with the first satellite one of the n th QSS and the main n th with the first 
satellite one of the nth QSS , respectively. 

It is worthwhile to notice that the work [12] has not revealed the physical nature of the com-
plex QSSs. Instead, it has only been told of the existence of two non-resonance peaks of the per-
meability coefficient for the two-barrier RTSs, because their maxima are shifted in the opposite 
directions with respect to the resonance energy. 

 
4. Conclusions 
Solving exactly the non-stationary Schrödinger equation, we have developed a quantum-
mechanical theory of permeability coefficient for the two-barrier RTS for the case of electronic 
current interacting with the high-frequency electromagnetic field characterised with arbitrary mag-
nitude of the electric intensity. 

It is shown that, besides the electron QSSs with the main resonance energies, satellite QSSs 
appear in the spectrum, due to interaction with the electromagnetic field. Their spectrum contains 
all of possible harmonics (multiples by the field energy) located near every main resonance en-
ergy. If the energy of the high-frequency electromagnetic field is equal to the difference between 
any two electron resonance energies, two pairs of non-resonance transparency canals appear in the 
two-barrier RTS in the vicinity of both these resonance energies. 

These peculiarities of quasi-stationary spectrum of the electrons interacting with the elec-
tromagnetic field in the two-barrier RTS change the active conductivity of this and the other com-
plicated nanostructures. We remind that the latter structures represent basic elements of quantum 
cascade lasers and detectors, and so the peculiarities mentioned above would essentially influence 
the operation characteristics of these devices. While developing in future a theory of the active 
conductivity for the complicated nanostructures, we will take into consideration not only the main 
harmonics, as it has been done before, but the satellite harmonics, too. 
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Анотація. З використанням точного розв’язку повного рівняння Шредінгера розвинута 
теорія квазі-стаціонарних спектрів електронів, взаємодіючих з електромагнітним полем 
довільної інтенсивності  у відкритих, двох-бар’єрних, резонансних, тунельних структурах. 
Показано, що крім квазі-стаціонарних електронних станів, що володіють звичайною резо-
нансною енергією і шириною у спектрах виникають додаткові  сателітні квазі-стаціонарні 
стани з резонансними енергіями, розташованими біля енергій кожного з квазі-
стаціонарних станів на енергетичних відстанях, що визначаються помноженням частот 
електромагнітного поля. 


