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Abstract. We have suggested a highly precise method for determining piezooptic 
coefficients, which relies on a knowledge of 2D spatial distribution of mechanical 
stresses in a crystalline disk compressed along its diameter. Relevant theoretical 
relations that describe piezooptic effect in the crystals belonging to the point 
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1. Introduction 
Piezooptic effect represents a well-known optical phenomenon that consists in changes of 
refractive indices of an optical medium under the action of mechanical stresses [1]. Using tensorial 
description, one can present the relation between the increments of optical-frequency 
impermeability tensor iB  and the mechanical stresses l  as 
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where il  is the fourth-rank polar tensor of piezooptic coefficients and n  the refractive index. 
Although the piezooptic effect has been discovered almost two centuries ago [2, 3], the experimen-
tal methods for its study are still being improved. This is because the accuracy of determination of 
the piezooptic coefficients is often very low, especially for anisotropic low-symmetry crystals, 
while the experimental errors can reach 30% or even larger values (see, e.g., [4]). 

As we have earlier shown [4], these errors are caused by inhomogeneous spatial distribution 
of mechanical stresses inside a sample appearing under its uniaxial loading, due to a friction force 
that arises between the sample surfaces and the substrates, and a barrel-shaped deformation of that 
sample. It has been found that all the six components of a symmetric second-rank stress tensor 
arise under such an action, with their spatial distributions being unpredictable. As a result, the 
actual value of the mechanical stress, which induces changes in the refractive indices, is in fact 
unknown. The second source of the high errors follows from complicated theoretical relations 
among the optical phase retardations under measuring and the mechanical stresses, which usually 
involves a lot of piezooptic tensor components. Thus, when determining one of these components 
in practice, one should measure the others in some additional experiments (see, e.g., [5, 6]). This 
fact leads to additional increase in the piezooptic errors. 

Let us consider this problem in a more detail. As shown in our recent work [4], the first 
problem consisting in appearance of inhomogeneous stresses inside a sample under its uniaxial 
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loading can be solved by creating two-dimensional (2D) inhomogeneous stresses in the sample, 
with in advance known distributions of the stress tensor components along the two transverse 
Cartesian coordinates. Notice that the optical retardation and the orientation of optical indicatrix 
should not depend upon the third longitudinal coordinate, along which the optical beam 
propagates. Hence, the errors for some of the piezooptic tensor components can be reduced down 
to 3–12% owing to application of torsion or bending stresses. It is known [7] that any torsion 
moment induces shear stresses, while bending leads to appearance of compression (or tension) 
stresses in samples. Considering the piezooptic tensor presented in its matrix form, 

 

,                               (2)

 
 

one can see that all of the piezooptic tensor components can be involved into piezooptic interaction 
in consequence of application of bending or torsion stresses. For convenience, we divide the 
piezooptic tensor given by Eq. (2) into four parts. The first part (A) corresponds to the coefficients 
that describe compression (or expansion) of the optical indicatrix ellipsoid along its principal axes, 
as a result of compressive or tension stresses. The second one (B) describes the same changes in 
the optical indicatrix, though taking place under shear stresses. The coefficients of the third (C) 
and fourth (D) parts describe rotations of the optical indicatrix under normal and shear stresses, 
respectively. Our earlier works [8–11] have demonstrated that the coefficients appearing in the 
first and second parts of the piezooptic matrix can be determined with high enough accuracy using 
bending or torsion of samples, respectively. However, precise determination of the coefficients 
figuring in the third and fourth parts still represents a conspicuous problem.  

The present work is devoted to further development of the methods for determination of 
piezooptic coefficients, in particular those belonging to the third and fourth parts of the matrix 
given by Eq. (2). Our method essentially relies on creating 2D stress distribution in a crystalline 
disk compressed along its diameter.  

2. Relations for the optical indicatrix in case of crystalline disc compressed  
along its diameter 
It is known [12] that, besides the torsion and bending, loading of a crystalline disk along its 
diameter can also create a 2D stressed state. When the disk is perpendicular to Z axis and the 
loading force P is applied along Y axis, the following three components of the stress tensor appear: 
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with d being the thickness of the disk and R its radius. Let us consider the crystalline disk made of 
lithium niobate. The piezooptic tensor for the point group 3m, of which LiNbO3 crystals are 
representatives, may be presented as 
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2.1. A disk perpendicular to Z axis 
With accounting for the mechanical stress components involved in Eqs. (3)–(5) and the equality 

11 12 66     valid for the symmetry group 3m, one can get the following relation for the cross 

section of the optical indicatrix of LiNbO3 by the plane Z = 0: 
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The angle of the optical indicatrix rotation around the Z axis becomes 
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Then the optical birefringence appearing for the case of light propagation along this axis is 
determined by 

3 2 2
12 11 12 1 2 6

1 ( ) ( ) 4
2 on n           .    (9) 

The spatial distributions of the birefringence and the angle of optical indicatrix rotation simulated 
for the XY plane of the LiNbO3 crystals are presented in Fig. 1. Here we have put P = 100 N, 

d = 2 mm, R = 10 mm and 12 2
11 12 0.47 10 m /N      , while 2.287on   and 2.203en  are 

respectively the ordinary and extraordinary refractive indices at 632.8 nm   [13, 14]. 

 (a)  (b) 

Fig. 1. Simulated distributions of birefringence and optical indicatrix rotation angle in LiNbO3 induced in the XY 
plane by the uniaxial compressive force applied along the Y axis. 
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Now one can analyse the spatial distribution of the birefringence in the XY plane. For ins-
ance, we have 6 0   for the component 6  along the diameter X = 0 (i.e., the diameter parallel 

to the direction of loading force vector), while the components 1  and 2  are then equal to 
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The birefringence along this diameter is determined by the relation 
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while the angle of optical indicatrix rotation (see Eq. (8)) is equal to zero. Notice that the 
birefringence remains nonzero just at the origin of coordinates: 
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As a consequence, one can easily determine the difference of the coefficients 11 12   using 

the nonlinear dependence of the birefringence on the Y coordinate obtained experimentally, along 
with Eq. (12). 

Under the condition Y = 0, i.e. along the diameter perpendicular to the loading force vector, 
we have 6 0  , though the other two components of the mechanical stress tensor remain 

nonzero: 
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In this case we have 3tan 2 0  , while the birefringence reads as 
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It is obvious that the difference of coefficients 11 12   (and so the 66  coefficient) can be 

easy determined from Eq. (12) or Eq. (16), provided that the birefringence distributions 
respectively along the diameters parallel to the X or Y axes are known in advance. Moreover, one 
can determine the coefficients 11  and 12  separately using a standard interferometric technique, 

since the optical indicatrix orientation does not depend on the coordinates mentioned above (see 
[10]). 

2.2. A disk perpendicular to X axis 
When the disk is perpendicular to the X axis and the compressive force is applied along the Z axis, 
the nonzero components of the mechanical stress tensor are as follows: 
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In this case the equation for the optical indicatrix should be written as 
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From Eq. (20) it follows that the birefringence increment and the angle of optical indicatrix 
rotation can be presented respectively as 
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with 3 2( ) / 2n n n   and 32 3 2n n n   . 

Along the diameter Y = 0, one can rewrite Eqs. (21) and (22) with taking Eqs. (17)–(19) into 
consideration: 
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Then the birefringence increment is given by 
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At Z = 0, this relation looks like 
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Basing on Eq. (26) and the dependence simulated for the case of LiNbO3 crystals (see Fig. 2), 

one can evaluate the combination 3 3
33 13e on n   of the piezooptic coefficients. Notice that our 

simulation has used the following values of the piezooptic coefficients: 12 2
11 0.38 10 m /N    , 

12 2
13 0.8 10 m /N   , 12 2

31 0.5 10 m /N   , and 12 2
33 0.2 10 m /N    [13]. Then the 
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geometry Z = 0, Eq. (27) and the known difference 3 3
33 13e on n   would enable one to determine 

the combination of coefficients 3 3
11 31o en n  . 
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Fig. 2. Simulated dependence of birefringence 
increment on Z coordinate for the LiNbO3 crystals. 

 

Furthermore, one can find the coefficient 41  from the measured dependence of the optical 

indicatrix rotation angle (see Eq. (22)): 
3
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It is also seen that the optical indicatrix rotation angle does not depend on the Z coordinate, 
being quite small (we have the value of 0.01 deg for the LiNbO3 crystals, basing on the value 

12 2
41 0.88 10 m /N     [13]). 

The stress tensor components needed to be accounted for along the diameter Z = 0 (i.e., the 
direction perpendicular to the applied force vector) are equal to 
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Then the birefringence increment is given by the relation 
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Putting Y = 0 in Eq. (32), we arrive at 
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As seen from Fig. 3, one can easily determine the mentioned combination of the piezooptic 
coefficients (see Eq. (33)) using the dependence of the birefringence increment on the Y 
coordinate. It is interesting to notice that in this case the angle of the optical indicatrix rotation, 
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does depend on the Y coordinate. The latter could serve as an additional tool while accurately 
determining the 41  coefficient. The corresponding dependence is shown in Fig. 4. 

-10 -5 0 5 10
-3

-2

-1

0

Y, mm

(n)23, 10-5

 

Fig. 3. Simulated dependence of birefringence 
increment on Y coordinate for the LiNbO3 
crystals. 
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Fig. 4. Simulated map of optical indicatrix rotation angle (a) and its dependence on Y coordinate (b) for the 
LiNbO3 crystals. 

2.3. A disk perpendicular to Y axis 
When the disk is perpendicular to the Y axis and the compressing force is applied along the X axis, 
the operating components of the mechanical stress are determined by the relations 
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The equation for the optical indicatrix can be written as 
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Therefore the birefringence increment acquires is given by the formula 
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while the angle of optical indicatrix rotation around the Y axis becomes 
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The latter relation facilitates determination of the 44  parameter using measurements of the 

optical indicatrix rotation angle ( 0, 0X Z  ). The corresponding map of the optical indicatrix 

rotation angle obtained due to computer simulations is presented in Fig. 5 (here we have used the 

value 12 2
44 2.25 10 m /N    [13] for the piezooptic coefficient). 

 

 

Fig. 5. Simulated map of angle of the optical 
indicatrix rotation around Y axis for the LiNbO3 
crystals. 

 

 

The birefringence increment under the condition of X = 0 is given by 

   
3 2

3 3 3 3
31 11 31 13 332 22 2 2 2

2 1 2 1( ) ( ) ( )
2 2o e o e

P R RZn n n n n
d R RZ R Z R

    


    
                       

 .   (41) 

In particular, we have 

3 3 3 3
31 11 31 33 132 2

2 1 1( ) ( ) ( )
2 2o e e o

P Rn n n n n
d R RR X

    


           
   (42) 

at Z = 0. In other words, it is possible to determine the combination of the piezooptic coefficients 
after studying the dependence of the birefringence increment on the X or Z coordinates. 

3. Experimental procedures and results 
A sample of LiNbO3 crystal used in our experiments was prepared in the shape of a disk, with its 
faces perpendicular to the Z axis. The sample had the radius 7.5 mm and the thickness 3 mm. The 
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YZ plane was accepted to be parallel to one of the symmetry mirror planes. A light of a He-Ne 
laser (the wavelength of 632.8 nm  ) propagated along the Z axis. 

The loading force (P = 19.8 N) was applied along the diameter of the disk parallel to the Y 
axis. We have used a polarimetric setup described earlier in the work [15]. While measuring the 
optical birefringence, we made the probing beam circularly polarized, thus avoiding unnecessary 
sensitivity of this beam to the orientation of optical indicatrix. Then the sample is described by a 
model of linear phase retarder, for which the dependence of the output intensity I  on the analyzer 
azimuth   is expressed as 

      0
3 1 2 31 sin ΔΓsin 2 sin 2

2
I

I C C C        ,  (43) 

where 3  is the orientation angle of the optical indicatrix and 12ΔΓ 2 Δ /n d   the optical phase 

difference. After recording and filtering the image, azimuthal dependences of the intensity I  were 
fitted by the sine function for every pixel of the image, with the fitting coefficients 

0 0
1 2 3 3, sin ΔΓ,

2 2
I I

C C C    .    (44) 

It is evident that the optical phase difference ΔΓ  is given by the coefficients 1C  and 2C : 

2 1sin ΔΓ= /C C ,      (45) 

while the angular orientation of the intensity minimum is determined by the orientation of the 
principal axis 3  of the optical indicatrix, together with the coefficient 3C . Hence, fitting of 
dependences of the light intensity measured behind the analyzer upon the azimuth for each pixel of 
the sample image should enable constructing 2D maps of the optical anisotropy parameters of that 
sample, i.e. the optical phase difference and the orientation of the optical indicatrix.  
 
 

(a)  (b) 
Fig. 6. XY maps of birefringence (a) and optical indicatrix rotation angle (b) induced in the LiNbO3 crystals by 
the loading force 19.8 N ( λ = 632.8 nm ). 

The maps of the induced optical birefringence and the optical indicatrix rotation angle 
measured experimentally are shown in Fig. 6. These maps are similar to the theoretical ones 
presented in Fig. 1. As a result, we have obtained the piezooptic coefficient 

12 2
66 11 12 (0.20 0.01) 10 m /N         using Eq. (12) and the corresponding birefringence 

distribution obtained experimentally along the Y axis (see Fig. 7). The error for the piezoptic 
coefficient does not exceed 6%. The piezooptic parameter obtained by us is smaller than that 
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reported in the work [13] ( 12 2
11 12 0.47 10 m /N      ), however the experimental error in the 

latter study has been essentially higher (~ 15%). 
 

-8 -6 -4 -2 0 2 4 6 8
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0
n, 10-6

Y, mm  

Fig. 7. Dependences of birefringence 
induced by the loading force 19.8 N in 
the LiNbO3 crystals on Y coordinate: 
solid curve corresponds to calculations 
based on the piezooptic parameter 

× -12 2
11 12π π -0.47 10 m N- = /  [13], with 

the error bars displayed, and circles to 
our experimental results.  

 

 

It is also worthwhile that the Poisson deformation does not affect the total phase difference 
measured in our case, since the initial birefringence along the Z direction is equal to zero. At the 
same time, the influence of the Poisson deformation on the total phase difference measured in the 
work [13] has been estimated following from the literature data on the elastic compliance 
coefficients. This should very likely give rise to some additional errors in determination of the 
piezooptic coefficients. Finally, we would also like to remind that the lithium niobate crystal is a 
well-known piezoelectric material where electrical polarization induced by the mechanical stresses 
can lead to additional changes in the birefringence, due to a so-called secondary electrooptic 
effect. In our experiments, the sample has been isolated and so this secondary effect indeed 
contributes to the total optical birefringence. On the other hand, as far as we know the electric 
conditions of the sample used in the work [13] have not been controlled at all. 

4. Conclusion 
In the present work we have suggested a precise enough experimental technique for determination 
of piezooptic coefficients. The technique is based on creating 2D distribution of mechanical 
stresses in a crystalline disk compressed along its diameter, which should be known in advance. 
Using a specific example of crystals that belong to the point symmetry group 3m, we have 
concentrated upon the differences of coefficients such as 11 12  , 3 3

11 31o en n  , 3 3
33 13e on n  , 

etc. These are the coefficients indicated as (A) in the matrix given by Eq. (2). We have proven 
theoretically that the above piezooptic parameters can be successfully determined after measuring 
the optical phase difference. In addition, the coefficients 44  and 41  can be calculated basing on 

the measurements of the optical indicatrix rotation angle. Finally, the technique suggested in this 
work has been verified on the example of the parameter 11 12 66     for the LiNbO3 crystals. 

We have shown that this piezoopic difference can be calculated with high enough accuracy. The 

mean absolute value of 11 12 66     is equal to 12 2(0.20 0.01) 10 m /N  , so that our 

experimental error does not exceed 6%. 
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Анотація. Ми запропонували новий, високоточний метод вимірювання п’єзооптичних 
коефіцієнтів, який базується на відомому 2D розподілі механічного напруження в 
кристалічному диску, стиснутому вздовж діаметра. Отримані відповідні теоретичні 
співвідношення, що описують п’єзооптичний ефект в кристалах, що належать до 
точкової групи симетрії 3m. Даний метод був експериментально перевірений з 
використанням кристалів LiNbO3.  


