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Abstract. We have obtained phenomenological relation for the Poynting vector of
electromagnetic wave propagating in crystals that possess a so-called weak optical
activity. The appearance of transverse component of the Poynting vector and a
transverse shift of the optical beam due to spin-orbit interaction are discussed.
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1. Introduction
It is well known that optical activity is described by accounting for inhomogeneity of electric

induction D, appearing in the relation for electric field E. of an optical wave that propagates

through a medium:
0 oD,
Ei =Byl +viw 5~ ()
where Bi(/)' denotes the optical-frequency impermeability tensor, y;; the third-rank antisymmetric

polar tensor (y;; = —7 ji ), and x; the coordinate. Using the known duality relation,

2r
Yk = 8ij1 ik » )

one can reduce the tensor y;; to a (generally nonsymmetric) second-rank axial gyration tensor

gy (with §;; being the unit antisymmetric Levi-Civita tensor). Then Eq. (1) may be rewritten as
0 .
Ei = (BI/ + lé}ilglkmk)D/ , (3)

2r . . .
where k; = ka denotes the wave vector of light and m,, the unit vector parallel to % . In its

turn, the nonsymmetric gyration tensor can be decomposed into symmetric and antisymmetric
parts:

ik = &k + &k » “4)

A common point of view is that the optical activity effect is purely associated with the

symmetric part of the gyration tensor. Scarce experimental data is available on manifestations of a

kind of optical activity concerned with the antisymmetric part of the gyration tensor which is dual
to some polar vector 4, ,
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gl[;fs = 5lkrhr ’ (5)
while the results of relevant theoretical analysis are very poor [1-5].

Recently, we have shown that this effect known as a weak optical activity should manifest
itself in some changes of refractive indices and optical birefringence [6]. Moreover, if both the
common optical activity and the weak one are simultaneously present, the polarisation state of one
of the eigenwaves in crystal acquires a complicated longitudinally-transverse elliptical polarisation
[7]. This novel polarisation eigenstate comprises two elliptical states, one of which is transversely
elliptical and the other longitudinally elliptical.

Due to the Neumann’s symmetry principle, the point symmetry groups for which /4, #0 are
1,2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm, o0 , and comm . Among these groups, only four reveal no
common optical activity (g, =0): 3m, 4mm, 6mm, and comm . Eq. (3) for these media may be
written as

E; =(B) +i803,hm ) D; . (6)

It is obvious that only a single component of the /. vector remains nonzero for the crystals

that belong to the point groups 3m, 4mm, 6mm (namely, we have A, #0).

2. Results of analysis

Let a plane electromagnetic wave propagate through a transparent, anisotropic, magnetically non-
ordered, though spatially dispersive, medium. Consider the Poynting vector represented in the
usual form [8, 9]

Si+ S = (7
where u; W is the total electromagnetic energy flow, W the energy density, S,? the energy flow

without accounting for the spatial dispersion effect, S}( the extra energy flow that appears if the
spatial dispersion is present, u; = 0w/0k;, means the group velocity, and @ the frequency of

wave. The relations for the energy density and the time-averaged Poynting vector components are
given by

1 G(a)gi-) « 1 *
W=— & EOJEOZ +_BOiB0i . (8)
4 0w H
l * *
0 _
S = ™ {[Eo, % By |+ Bo, xBoj]}, 9)
1 agi' *
St = ——go0—2 EyEy; , 10
EETRR0% 0, Eoi (10)
@=const

where ¢&; stands for the dielectric permittivity, &, the dielectric permittivity of vacuum, E;, E;l-

the amplitudes of electric field components, B, B; the amplitudes of the magnetic induction, and
My the magnetic constant. When specifying Eq. (10), one needs equations for the dielectric

permittivity tensor components and their wave-vector derivatives for the media that possess the
weak optical activity.
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Let us consider a particular case of optically uniaxial crystals, for which the following
conditions are satisfied:

by #0;h = hy = 0; BY = BY, # BYy;my =my = 0;my =1. (11)
The matrix that couples the components of the electric field and electric displacement vectors
becomes
D D, D
E | BY 0 imm
E,| 0 BY 0
E; | —ilym; 0  BY

; (12)

so that we get a system of equations
El = BlOlDl + ih3m1D3
0
E2 = Bl 1D2 . (13)

The corresponding relations that describe the electric induction of electromagnetic wave as a
function of its electric field may be found as

B§3 . hym
=0 00 2P T 0 7 £3

By B33 —(h3m1) By B33 —(h3m1)

1
D,=—E . (14)
2 BIOI 2

2

D — hym, E [L (h3my) \E
371700 20 21 L 0 0 (p0 RO 2J 3

By B33y —(hymy) B3 333(311333—(h3m1) )

Thus, the dielectric permittivity tensor is as follows:

B:?:; _ ih3m1
BB — (hym;)? B\ BY; —(hymy)?
1
11
ihymy 0 L. (hym;)’
2 0
B, B3 —(hymy) By B (3101323 —(h3m1)2)

Taking into account the relation hymy = h3kjA/27m = hykic/ @, one can rewrite the matrix

given by Eq. (15) as

©’BYs 0 y whykic
2 2

> B\ BY; — (hskic) > B\ BY; — (hskic)

1
& = 0 B—O 0 . (16)

11

; whykc 0 L(l (}’3]‘10)2 )

0’231013% _(h3klc)2 B§)3 k 0’231013% _(h3k10)2J
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Then the wave-vector derivatives of the dielectric tensor components reduce to

2
9(&11) _ 2k’ B3 (k)
ok - 2 0
1 lw=const |:sz10le?3 —(h3k10) :|
9(e2) _o, (18)
Ok, @=const
2
9(&33) _ 2k’ (k)" B}
T Lyoons 27 ()
b lo=const [0)2310135)3 ~(h3kic) J
20 po 2
a(&13) - iohe o” By B33 + (h3kic) (20)
2
akl @=const |:COZBIOIB§)3 —(h3klc)2j|
Using Egs. (17)—(20), one can represent Eq. (10) as
2
1 1 k 0)3 e 0 * 0 *
Si==5% 01 . (Ase) ; 2(333E01E01+311E03E03)
[60 Bi1B3y —(Mskic) ] @)

a)zBlole?B + (h3k1c)2

[0’23101333 _(h3k10)2J

1 . 2 * *
+Zl£0w h:)’c 2 (E03E01 - E01E03)
In the assumptions that ES 1 and ES3 are real, Eq. (21) for the component Sll of the Poynting

vector consists only of real part. The real part appearing in Eq. (21) is associated with some
changes in the group velocity of electromagnetic wave caused by the weak optical activity.

As follows from Egs. (14), the component D is a pure result of the weak optical activity.
Due to the condition D; L B, 1 k3, the component k; of the wave vector has to arise, too. This

means that Eqgs. (17)—(20) should also include the derivatives of k3, thus inevitably leading to

appearance of the component S; of the Poynting vector. In fact this implies that the light beam

should ‘drift’ along Z direction while propagating in crystals with the weak optical activity. This
effect can be easily explained when taking into account that the elliptically polarised photon, with
its polarisation ellipse belonging to XZ plane, should possess a spin-orbit momentum component
s, . The existence of this component of spin angular momentum would lead to the drift of photon
mentioned above, as a result of a spin-orbit interaction and an optical Magnus effect [10—12].

Now let us derive the relation for the S; component of the Poynting vector. As already
mentioned, the weak optical activity leads to inclination of the D component of electric induction
of the electromagnetic wave propagating along X direction, with appearance of D, component.
The ratio of these components can be expressed as

D] _ B§3El —ih3m1E3 _ k3 (22)
Dy ihymE +BYE;, Kk
Taking into account that my = kjc/®, one can rewrite Eq. (22) in the form of quadratic

equation with respect to the wave vector £ :

lh3 (kl )2 CE3 - k]E] (a)B& + lh3k3c) - Q)Blolk3E3 =0 5 (23)
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with the solutions

(ki)

1

., @4

2
of which derivatives can be represented as
0 2 02\, - 2
akl El + QJ(B33E1 + 2B1 1E3 )+ lk3h3CE]
Ok

(25)

= T 3 .
womeonst 2E3 o 02 (BOV B2 Z (k)P () B2 + 2ilscoks (BYE? +2B0 B2
3 33 1 3 3 1 Z3COK3 | b33 L 11£3
Considering Eq. (22), one can rewrite Eq. (25) as
2 50 0 2\ 2 | A 0 0\2 -2

= * 20 R0 2 0 -2 ) (26)
o=const  2E3 2(0) By B3; + (Iskic) )E1E3—4ih3k100’311E3

ok
Oy

Since the S, vector is defined by the relation

/

. . 1 Ogj;

St = ——gp0—L EyEy = —— 90—
3 0 0, 0i 4 0 akl

ok
Ok,

@=const

ok,

=1 sto©7
ks 1, (27

%
OjEOi =

w=const @=const

@=const

one can write out the final expression for the Z component of the Poynting vector:

2 3, (g0 L p0 g
&y (he)” 0’k (333E01E01 +311E03E03)

Sl

2
4[6023101323 —(h3k1c)2J

2 2
(0’23101323) —(h3k10)4)E13E3 +2(WB101) (@23101323 —(h3k10)2)ElE33

(28)
2 2
(0)23101393 +(h3klc)2) E12E32 + 4(h3kICC()BIOI) E;‘

2 3, (p0 x50 * . 3(p0 V2[R0 272, p0 4
&y (he)” o’k (333E01E01 +311E03E03) 4ilskico (Bll) [333E1 E3 +Bl]E3]
- X

2 2 2 4
4 @ By By - (hskic)’ | (@ B\ BS; + (hskie) ) ELE] +4(hkcoBf ) B3
In the assumptions E,, = E,, = E, and E,, = E,;, = E,, Eq. (28) reads as

so (i) kyc*o’ (B£3E12 + 3101E32)

2
w=const 4|:a)zBlolB§)3 —(/’l3klc)2:|

2 2
E ((0)23101323) —(h3k10)4)E13E3+2(0’3101) (C‘)ZBIOIBBO3_(h3kIC)2)E1E33

(29)
2 2
(6023101323 +(h3klc)2) Eleg + 4(h3k10(03101) E;‘

2
()’ ko’ (BSE? + B E3) ) 4ihskico’ (B | | BHE'ES + B ES |

2 2 2 :
4|:sz1013§)3 _(h3klc)2j| ((023101323 +(h3klc)2) E12E32 +4(h3kICCDB101) E;‘

Now one can extract the real part of the Z component of the Poynting vector basing on
Eq. (29). It is equal to
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&0 () kyc? o’ (330317512 + B1O1E32)

(Sé)Re T 2 p0 0 27?
4[50 By1B3; —(hskic) J
2 2 (30)
E, (0’23101393) —(h3k10)4)El3E3 +2(G’B101) (0’23101323 _(h3klc)2)E1E§
x| —=
+ 5 ,
Es (@2 B BS + (k)| ERET + 4(hskcoBl,) EY
or
(Sl) &0 () ko’ (B§)3E12 +3101E32) E,
N =- e
* 4[“’231013?3 —(h3k10)2] =
2 4
& (h)* by’ (B%El2 +BIOIE32) ((0’231013303) —(h3kic) )E13E3 an

2 2 2
4|:602B101B§)3 —(h3klc)2:| (a)zBlolB:?3 +(h3klc)2) E12E32 +4(h3klca)8101) E:?

2
e () ko’ (B§)3E12 +3101E32) 2(603101) (0’231013% —(h3k10)2)E1E33

2 2 2 4
4|:(02BIOIB§)3 - (h3klc)2j| (Cl)zBl()lB:?} + (h3klc)2) E12E32 + 4(h3k106()B101) E;
Neglecting the smallest second and third terms in the r. h. s. of Eq. (31), one can represent
this equation in the following form:

1 o (h3)2 ko’ (B%Elz +3101E32) E,
(SS)RC - F.

2 E
4[0’231013303 —(h3k15)2J . (32)
g () by’ @’ (BT?BEIZ + 3101E32) E

_ — :
46043101 3:93 —86023101323 (h3klc)2 + 4(h3k1C)4 E3
2
When accounting that —8w>BY BY (hkic)” +4(hskic)* << 4w* (BPIB§)3) , one gets

&o(hs)? k1c2(8§)3E12 +B101E32)ﬂ

=(s!) b (33)

(S31)Re T Re

2 2
40B)\ BY £
Finally, if a small optical anisotropy is assumed ( B§)3 = BIO] ), Eq. (33) reduces to
1 E E
N 1t 2 L () £
(Sz)Re ¥ (h3)" ¢ Ly, E, (Sl )Re E’ (34
where 7 is the mean refractive index and /,,, the total light intensity propagating in crystal. As

seen from Egs. (33) and (34), the Z component of the real part of the Poynting vector does not

depend on the sign of vector 4, , though it is dependent on the module of the latter, as well as the

total intensity of light, the refractive index, and the ratio E;/E;. Notice that the condition

E| << Ej5 gives rise to the relation (S;)R << (Sl1 )R .
€ €

3. Conclusions

In the present work we have obtained a relation for the Poynting vector of electromagnetic wave
that propagates in crystals possessing a so-called weak optical activity. It has been revealed that
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the Poynting vector has some transverse component that describes transverse shift of the optical
beam. Such a beam drift could be explained following from the quantum properties of photon.
Namely, longitudinal elliptical polarisation of electromagnetic wave caused by the weak optical
activity corresponds to a transverse spin of photon. Due to spin-orbit interaction, the transverse
spin results in the transverse drift of that photon.
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Anomauin. Odepoicano cniegionowenns ons éexkmopa Ilotinminra enekmpomazHimuoi xXeuni, siKa
NOWUPIOEMBCA 8 KPUCMANAX 3i CIAOKOI0 ONMUYHOI akmugnicmio. Y pobomi 062060peHo nosgy
nonepeunoi komnonenmu gexkmopa Ilounminra ma nonepeurHozo 3MiujeHHs ONMUYHO20 NPOMEHs
8HACNIOOK CNiH-0POIMANbHOT 83A€MOOI].
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