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Abstract. Key optical technologies, including lithography, data storage, optical
tweezers, microscopy, and ultrafast laser materials processing, rely on strongly fo-
cused light beams. Such beams are often used to exploit a vectorial nature of light
and so detailed knowledge of the field structure inside a tight focus becomes in-
creasingly important. So far, theoretical studies of intra-focal optical field compo-
nents have been mainly concentrated on spatially homogeneous states of light po-
larisation. In this work we present a new development in the calculations of local
polarisation structure of tightly focused singular beams, including radially and azi-
muthally polarised hollow beams.
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A rapidly increasing number of various practical applications in the last few years have attracted
significant interest to studies related to three-dimensional structure of the field inside a focus of
high numerical-aperture optical systems [1-5]. Experimental intrafocal mapping of the squared
electric field components is usually indirectly achieved with near field probes [6], point scatterers
[7], fluorescent molecules and beads [8, 9], and the knife edge method [10]. Recently, a new ap-
proach has been developed [2] for visualising nanoscale structure of the electric field inside the
focal volume of tightly focused singular beams, which is based on permanent imprinting of the
field in transparent media.

From the theoretical point of view, the first comprehensive studies of tightly focused linearly
and circularly polarised Laguerre-Gaussian beams have been performed in Refs. [11-13]. In Refs.
[1, 14], the authors have attempted to analyse the focal spot of both radially and azimuthally polar-
ised beams. The problem has been qualitatively solved in Ref. [14] for the case of non-apodised
cylindrical vector beams, hence providing basic understanding of the focal structure of real beams.
The general method allowing one to solve such problems is based on Debye vector integrals. A
complexity of the problem for some types of vector beams, e.g., radially or azimuthally polarised
beams, is related to finding an integrand ¥ which would satisfy the conditions for the paraxial

waves (V2 +47ia™'0,)¥=0) and simultaneously describe the vector field components. In the
above expression, V, =0.e, +0,e, and 0, =0/0u, with e,, e, being the Cartesian unit vec-

tors and A the wavelength of light.

In this work we wish to show that the complete vector function for radially or azimuthally
polarised beams can be obtained by first finding solutions for linearly and circularly polarised op-
tical vortices, in which case the choice of the integrand ¥ does not pose any difficulties. We start
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with finding the solutions of the Debye problem for linearly polarised optical vortices, following
the formalism suggested in Refs. [11, 12].

The complex amplitude of a scalar Laguerre-Gaussian beam at its waist may be written as
[12]

Ey(r,,2 = 0) = Ay(\/2r/ WO)""‘L‘;]"‘(ZF2 I wo)exp(=r2 / wy?) exp(im) , (1)
where 4, is the characteristic amplitude at the peak of intensity, » the radial distance from the
beam axis, ¢ the azimuthal angle in the entrance plane (see Fig. 1), L‘;,”‘(x) the Laguerre polyno-
mial with the radial index p and the azimuthal index m, and w, the beam waist.

The radial coordinate can also be presented as » = fsin(6) , where 6 is the angle between the
optical axis and the light ray (see Fig. 1). Then the ratio /wy becomes
ro al sin 6
—=——-sinf=y——. 2
w  wNA 4 sin o @
Here NA=a/ f =sina stands for the numerical aperture of the focusing lens (from now on, the
refractive index of the medium in which the beam is focused is assumed to be equal to unity), «

is the maximum angle defining the beam convergence (o = 6,,,, ), and the ratio y =a/w of the

entrance aperture radius ¢ and the beam waist w represents the truncation parameter denoting the
function of the beam inside the physical aperture. It defines the fraction of the beam which goes
through the lens. The lens is overfilled if y <1 and underfilled if y >1 [11, 12].

Fig. 1. Representation of focal geometry for singular beams. (x, y) and (x,, y,) are the Cartesian coordinates in
a plane of physical aperture and a focal plane, respectively, r, denotes the radial distance of point P from z axis,
a the physical aperture, a4 the radius of non-transparent disk which increases efficiency of the physical aperture,

a the numerical aperture (NA) of an objective, ¢ the angular dimension of circular beam stop of radius a, w
the parameter defining size of an incident beam, and f the focal length.

In our case, which deals with an optical vortex incident on a lens, the radial index p = 0. Upon
taking Eq. (2) into account, Eq. (1) may be written as [14]
Ey(r,p,z=0) = 4 (0)exp(img) 3)
where

ino\" () sin?0)
40)= 4 (V27 229 exp| 7P )
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describes the amplitude function of a collimated optical vortex. According to the focusing geome-
try shown in Fig. 1, the field distribution in the focal region is given by

a 2rx

E(rp.2)= (=iA/ )| [ 4,(0)P(0.0)4,(0)exp(imp) W
a 0

x exp(—ikrp sin Ocos(p — ¢p)) exp(—ikz cos 0)sin 0d0d p ,
where A, is a coefficient that depends on the optical parameters of the system [6], A the light
wavelength, the term P(6,¢) defines the polarisation distribution [4] at the entrance pupil, and 4,

gives the apodising function which is equal to vcos8 for aplanatic lenses [15].
The polarisation distribution of the incident beam in the entrance pupil plane may be pre-
sented as [4, 12]

P(6,p) = b (cos Ocos ¢sin ¢ —sin ¢ cos @) )

+b, (cos Osin? (o+c0s2 @)—b sinfcosp—b ,sinfsing,
where b; and b, denote the ‘strengths’ of the x- and y-linearly polarised incident beams, respec-

tively. Then Eq. (4) can be reduced to a single integral by using the identity
2z

I exp(im) exp(—ikrp sin Ocos(¢p — p))d =27i" J,,, (krp sin 0) exp(impp) ,  (6)
0

where J,, (krp sin 0) is the Bessel function of the first kind and the mth order.

Taking into consideration the above arguments, one can write the electric field components in
the focal region of the x-polarised vortex beam as [12]

E, = 2" exp(im@p)l,, — 7" exp(i(m +2)pp)l,, 2 — 7" exp(i(m —2)pp)l,, 5,
E, = —imi" % exp(i(m = 2)pp) s +imi™*? exp(i(m+2)pp) .2, (7)

E, = 22" exp(i(m +)op)l,, ., — 27" exp(i(m —)@p)l,, ;.
For comparison, when the incident vortex is y-polarised, the components of its electric field in the

focal region are given by

E, = —ini" % exp(i(m - 2)pp)1,, o +izi™ 2 exp(i(m+2)pp)l,,.»,

E,, = 27" exp(im@p)I,, + mi"™ % exp(i(m + 2)pp)l 4o + 7" exp(i(m —2)pp)l, 2, (8)
E, = —i27i" " exp(i(m —1)@p)1,,_ + 27" exp(i(m+D)op)l,,,;.-

Here

L,(rp.2) = (=id/22) [ 4,(0)cos O(1+ cos0).J,, (krp sin 0) exp(—ikz cos 6)sin OdO,

a

L1 (rp,z) = (—id/ 21).[ A4, (0)cos 6, (krp sin O) exp (—ikz cos 0) sin® 0d 6,

a,

o
1o (rp,z) = (—iA/ ZA)I A (0)Ncos O(1—cos 0)J,,,., (krp sin 0) exp (—ikz cos 0) sin Od 0.
a
The analysis of the above expressions shows that all of the three electric field components are
present in the focal region of the optical vortex and the light intensity is generally nonzero at the
optical axis:
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2
1= |Ex(rp,z)|2 +|Ey(rp,z)| +|Ez(rp,z)|2.

The solutions found above also allow one to examine focusing of elliptically polarised optical vor-
tices with the complex field amplitude in the entrance pupil plane given by:

E(0,0) = 4(0)exp(img)(E, +¢E, |, ©
where E, and E, stand for the x and y vector field components and ¢ is the phase shift between
them. (Notice that the bold type indicates a vector variable). A circularly polarised vortex is pro-
duced when |E,|=|E,| and ¢=+7/2.

The following sign convention for the circularly polarised beams is adopted hereafter: the cir-
cular polarisation is referred to as right-handed if ¢ =+7/2 and left-handed if ¢=-7/2, i.e.

E* = E +iE, = V2E6* . Here ¢ =(xzi y)/ V2 denotes the unit vector of circular polarisation

and X, y the unit Cartesian vectors.

Using the sign convention introduced we can add the field components in Egs. (7) and (8) tak-
ing into account the phase shift given by Eq. (9). Then the Cartesian components of the right-
handed field in the vicinity of the focus take the following forms:

ET = 27" exp(impp)1,, — 27" exp(i(m+2)pp)L,,.» »

m+2

Ey =i27i" exp(im@p)1,, +i27i"™ " exp(i(m +2)@p) 17 »
EF = —4zi™ MV exp(i(m +1)op)l,,.; -
Similarly, for the left-handed light field we obtain
E; = 27" exp(impp)I,, — 27" 2 exp(i(m —2)pp)I,, 5,
E}, = —i2mi" exp(impp)1,, —i2mi" > exp(i(m - 2)pp),,_» ,
E; = 4" exp(i(m-1)op)I,, ;.
Using the same notations, we get

EL = 27" exp(impp)1,, — 27" exp(i(m+2) 9p) L2,
E; = iZi(m'm exp(impp)1,, + mi" % exp(i(m = 2)¢p)lmﬂ), (10)
EX = —4ni™ exp(i(m+1)@p) 1,4

for the both vortices.

These relations allow one to deduce the salient features of the electric field in the focal region.
For instance, the fundamental Gaussian beam at the focal point (z =0, rp=0) always retains the
initial state of polarisation [11]. At the same time, the optical vortices with the topological charges
m =1, 2 have in general nonzero electric fields at this point, due to contribution from the longitu-
dinal components of the field. When the topological charge is greater than three (i.e., m > 3), the
focal intensity is always zero at the centre of the beam [11, 16]. Of particular interest is the case of
circularly polarised vortices with m = £1. According to Eqgs. (10), the vortex preserves zero inten-
sity along the whole optical axis when the sign of the topological charge coincides with that of the
handedness (m = o). When the charge and the polarisation have the opposite signs (m = —o ), an
intensity maximum appears at the focus, owing to the longitudinal component of the electric field
E. (see Fig. 2a). A detailed analysis of the properties of circularly polarised, and more complex
singular, modes is easier to perform using the polar basic vectors of the circular cylindrical coordi-
nates (see Eq. (9)):
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€. =Xcosp+ysing,
€, =ycosp—Xsing,

where €. and €, are the unit vectors along the radial and azimuthal directions.
The field components in Eq. (9) transform to the new coordinate system as follows:
ET = 27" exp(i(m+ V)pp)I,, — 27" exp(i(m+ 1)pp)], 49,
E;jr = i2i(7rim exp(i(m+D)pp)I,, + mi" =% exp(i(m + 1)(0P)Imi2), (11)

EZ = 47" exp(i(m £ )p) ;.

After simplification they can be rewritten as

EF =27i" (I, + 1,05 )exp(i(m 1) gp),
E} = £2imi™ (1, ~ Ly )exp(i(m£1) pp), (12)
EZ = —4ni" exp(i(m+1)@p) La1.

In order to obtain solutions for the radial and azimuthal modes at the focus, we use the follow-
ing reasoning. Radial and azimuthal beams with coinciding waists and the same divergences ac-
quired while propagating along the optical axis z of a focusing system, can be presented as

ETM:(\/E}’/W())G Er, ETE:(\/Er/Wo)G E(p, (13)
where G = 4, exp(—r2 / wg ) describes the fundamental Gaussian beam given by Eq. (1).

The circularly polarised optical vortices with a zero orbital angular momentum
(o =21; m=7F1) may be presented as a superposition of the two modes given by Eqgs. (13) [17,
18]:
o=%1

s = Epy £iErp = (2r/ wy) Go™ exp(Fig) , (14)

1
where ¢ = E(E, ti €,)exp(Lip) is the unit vector of circular polarisation in the cylindrical

coordinates. Hence, by knowing the focal field distribution of the circularly polarised vortices (12)

it is possible to reconstruct, with the aid of Eq. (14), the field of the corresponding radial and azi-
muthal modes. Indeed, from the system of equations

: =-1

Epy —iEqp =Ej—4

we find

m=— m=+1

Eny = %(Ef"zﬂ1 +Eo="1 )
E,. = l(Eo:H o=-1 ) (15)
LY

m=—1"Ym=+1
In this case the fields given by Egs. (12) may be expressed as

Ef = =2mi(Ley + 1), B,y =270 (L +1),

r,m=— m=

Eguiy = =27i(Lyey = 1), Eguii = 2ai(le —1,),  (16)

@,m=—

EZO:;I-Ll_l = —47710, o="1 —47'[[0

z,m=+1 =

where
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oa
I, _(rp,z)=(-id/ Zl)J‘ A ()N cos O(1+ cos 0)J_, (krp sin 0) exp (—ikz cos §) sin Od 0,

a,

a
I (rp,z) = (—id/ 21)‘[ A (0)Ncos O(1+ cos 0)J; (krp sin 0) exp(—ikz cos 0) sin Od 0,

o,

(04
1y(rp,z) = (—id/ 2&)_[ A (O)Ncos 0 (krp sin 0) exp (—ikz cos 0) sin” 60,

a,

a
1 (rp,z) = (—id/22) _[ A ()N cos O(1— cos 0)J; (krp sin 0) exp (—ikz cos 0) sin 6d 6,

a,

a
I_(rp,z)=(—id/ ZA)I A (O)Ncos O(1 — cos 0)J_, (krp sin O) exp (—ikz cos §) sin Od 6.
al
By applying the well-known identity J_;(x)=—-J;(x) to the above integrals for the cir-
cularly polarised single-charged vortices, one can reduce Egs. (16) to the following:
ECH —omil,, ECCCL, =27l ,

m=—1 = rom=+1 =
o=+1 . o=-1 .
Eyp——y =4nil,, E,,_ . =—4nil,, a7
o=+1 o=-1
Ez,m:—l = _47710 s> Lzm=+17 —4nl,

where

a
1. =(—id/ ZA)J. A (0)Ncos 0, (krp sin 0) exp (—ikz cos ) sin 260d 6,

a,

a
I, =(-id/ 21)_[ A (0)Ncos 0, (krp sin 0) exp (—ikz cos ) sin 0d 6, (18)

Q

a
Iy =(—id/ 21)_[ A (0)Ncos 0 (krp sin 0) exp (—ikz cos 0) sin’ 0d0.
al
Substituting Egs. (17) into Egs. (15), we find the electric field components of the focused ra-
dial and azimuthal modes:

EV(TM) = 47[i[r, E(D(TM) = 0, EZ(TM) = —872'10, Er(TE) = 0, E(D(TE) = 87Tl.1(0, EZ(TE) =0.

In the vector representation, the focal field components of the radial and azimuthal modes become
as follows:

{ETM =4r(il, €, —21,€,) 19

Epp =87il €,

One can easily see from these expressions that the azimuthal mode preserves both its polarisa-
tion and zero intensity along the whole optical axis even in the regime of tight focusing, whereas
the intensity and the polarisation structure of the radial mode undergo significant transformations
(see Fig. 2).

This difference in the behaviours of the two modes inside the tight focus can be exploited
when solving various practical problems. For instance, conservation of the zero intensity in the
azimuthal mode facilitates significantly optical implosion of materials. This novel phenomenon
has recently been demonstrated in the experiments on compressing fused silica with double-charge
femtosecond vortex laser pulses [19, 20]. On the other hand, the longitudinal component of the
electric field is also crucial for some important applications [5]. Radially polarised beams focused
with high numerical-aperture optics are now routinely used in microscopy [21], second-harmonic
generation [22, 23], Raman spectroscopy [24], and particle trapping or manipulation [25].
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(a)

-1 X, pm -1 0 x,um 1 -1 X, pm
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Fig. 2. Simulated intensity distributions in the focal plane for an optical vortex m = *1; o = F1 ((a) and (d))

Intensity [a.u.]

and azimuthally ((b) and (e)) or radially ((c) and (f)) polarised beams. Solid lines in (d)—(f) show total intensity
distribution, dotted lines correspond to intensity distributions in the transferred polarisation state, and dashed
lines give intensity distributions for the longitudinal polarisation state inside the beams. The parameters of the

optical system and the beams are as follows: NA=0.9, A =780 nm, a;=1.1 mm, and a =2 mm.
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Anomayia OcHogHi onmuuni mexHonoeii, 30kpema maxi AK aimoepaghis, 3anuc OaHux, 8UKOpUc-
MAHHA ONMUYHUX NIHYemis, MIKpOCKONiA ma Haoweuoxka obpobka nasepHux mamepianis, 6asy-
IOMbCA HA CUTLHOMY (DOKYCY8AHHT CEIMA08UX NPOMEHI8. Buxopucmanna yux npomenis 30ebinvuio-
20 bazyemvcs Ha 6eKMOPHIl NPUPOOi C8imaa, Momy 0emanbHa iHpopmMayis npo cMpyKmypy nois
ecepeduni oxyca € ocobauso eaxciusor. OOHak meopemuyne 00CIIONCEHHS 6HYMPIUHBbO DOKY-
CHUX ONMUYHUX KOMNOHEHM NOSL 00CT NePesadCcHO KOHYEHMPYB8AI0Ca HA NPOCHOPOBO 0OHOPIOHUX
cmanax noaspusayii ceimna. Y oaniti podomi npedcmasneno Ho8i pe3ynomamu po3paxyHKy cmpy-
Kmypu J10KaNbHOI NOAAPUIAYIT CUTLHO CQOKYCOBAHO20 CUHRYIAPHO20 NPOMEHS, GKI0YAOYU
BUNAOKYU PAOIATbHO MA A3UMYMALLHO NOJAPUZ08AHO20 NYCHOMIN020 NPOMEHS.
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