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Abstract

A analogy between opticalehting in the inverse transmittance spectrum of
transparent double-layer structunedaa beating phenomenon known from the
standard vibration theory has beamsidered. We have determined analytical
conditions under which the optical beating mastdtself the most clearly in the
interference spectra ofiultilayer structures.
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1. Introduction

It is well known that a plane-parallel FalPgrot resonator reprasts a multifunctional
device with very wide application raegincluding filtering of signal§l], optical com-
municationg2, 3, sensor¢4, 9, etc. Usually, it is analysebasing on coherent summa-
tion of signals, with consequent calcubais of interferencera polarisation patterns.
This represents a basis of integiece methods for parameters metefiglg along with
strong complement of multibeam interference envelope techifitjug@. A number of
analytical relations for the galopes of both the minimums and maximums of the inter-
ference spectra for the structuimsisting of two and thrdayers have been derived in
the work [9] using computer modelling of ampiide-and-phase Fabry-Perot spectra.
These relations correspond to different polssratios between thghase thicknesses of
the layers. However, the studigs 10 do not contain physicaxplanations of the phe-
nomenon. In the present article we derivpressions for the envelopes in frame of
analysis for the regularities optical beating, wich is demonstratefbr the interference
spectra of the structures with two (or moiayers. Further on we will use a term ‘inverse
transmittance spectrum’ recently used in literature, in order to make a relevant anal-
ogy. It is stipulatedy simplicity and efficiency of angiical expressions for the inverse
transmittancel/T , when analysing multilar interference coating41].
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2. Optical beating in the reflectance, transmittance and inver se transmittance
spectra of multilayer structures

Unlike single-layeed structures, the enwgles of the reflectanceR(A) ), transmittance
(T(A)) and inverse transmittanc&V/(A) =1/T (1)) spectra of multilayer structures are

oscillating, and the peab-peak amplitude of thesaescillations depends on the light
wavelength:

AR(A) = R™*(1) —-R™"(1), (1)
AT(A) =T™(A) -T™1), (2)
AW(A) =W™ (1) =W ™(1), 3)

where R™*(1), T™*(A), W™(A) and R™(A), T™" (1), W™ (A) are respectively
min

the envelopes of maximums and minimuimghese spectra. The less the raﬁggﬁ

min min
(for the reflectance spectrumﬁ,_-:_-Tw( (for the transmittance spectrum) a% (for

the inverse transmittance spectrum), the nubearly the optical beatg manifests itself
in the spectra in thehape of pulsation@R(A), AT(A) or AW(A). Here AR™™™a

AT™M and AW™™™ gre the minimum and maximuralues of the peak-to-peak
amplitudes (see Fig. 1) in the appropriatectfa observed insidbe wavelength interval
under examination.

2.1. Optical beating in the inver se transmittance spectrum for a transparent
double-layer structure asan analogue of beating in the vibration theory

One can draw a mathematicalabogy between optical beatingbserved in the inverse

transmittance spectrum/(A) of a transparent double-laysiructure and a phenomenon

of beating known from the standavibration theory. It is welknown that the latter arises

when two harmonic oscillations with equal glitudes and close frequencies are super-

posed [12, 13]. For this purpose, we tak®e iconsideration thexpression for the ampli-

todudo g 2e’®
1+ rl,zrz,ﬁ_zwr2 *trof 1,§_2i61 ok 2,%'_2 e

tude transmittancef, ; = 55 [14] and write

down the inverse transmittanv¢ = —————— in the following form:
N coSB; 31y 5
W=A+B(Scos(B )tS, cos(@, ¥S; cos@+ & 9S, cos@- &),  (4)

N, cosf, 1
A= | 2
Ny COSB; toity 454 Ny COSPB; to,t1 453

S =2t 2001 1,522,:1 S, =2 fp5t er,’{ 1520 S=2g4M5 and S, = 2ro,1r12,5 2.

2,2 2,2 .22
1410503+ o 127 ok 2,}’

where B :&LS'BO 1
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Herer;;,, andt;;,; (i=0,1,2) denote respectively the Fresnel reflection and transmis-

2rmd;n; cosf
A
phase thicknessj; the refractive indexd; the thickness of laygr, and 3; the angle of

sion coefficients fo single interfaces - (i +1) [14], J; = (j=21,2) the

light propagation in this layer.

T/Tmax,min
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Fig. 1. Transmittance at normal incidence (T , solid curve) and envelopes of

its minimums (T™", dotted curve) and maximums (T™, dashed curve) for
a transparent double-layer structure with the refraction indices n, =1,

n =138 n,=1.85 n;=4.0 and the phase thicknesses of layers
o, =1lrad and J, =10radat A =4,.

min

WheneverA =0, the optical beating in theverse transmittance spectrum

max
of double-layer structures is seemyvelearly in the éur following cases:

1) dyny cospB, > dyn, CogB,, 1, =15, (5)
W=A+ 2r0'1r1,28((1+rf,2) COS(D )+1 o 1,C08(8 , ¥ cos@+ @,Hr% , cos®@r c‘B) ©)
+2r7,B cos(d, );

(2) d;n, cosB; > dn, coPB,, 1, =T, 3 (7)
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W=A+ 2r0’1r1’28((1+rf,2) COS(D )T o 1,€08(F , )} cos@q+ @,Ir? , cos@ cB; @®
-2r7,Bcos(d, );

3 d;n;cospy < dn, coB,, 1y, =1y ,, 9

W= A+ 2, 1, B(1 g, £08(@ )+ 1+12) cos(@, ¥ cos@s+ @, , coser @) 10)
+2r7,Bcos(d, );

(4) d;n; cospBy < dn, coB,, Iy =Ty, (11)

W= At 2002 8111 o $0S@ )4 1417} 0@,y cos@yr B, I, coster @)\
-2r2,B cos(?, ).

While drawing the analogy, weill also consider a varidnof the structure, for
which the refractive indices of the neighbiogr layers differ inginificantly from each

other (n,, -n|<0.5). Then we may ignore small summus in Egs. (6), (8), (10) and
(12), assuming that the condition$ <1, |r,,r, | <1 and|r, ,r, { <1 are valid.

If the structure parameters sétishe conditions described Wygs. (5), then the in-
verse transmittance (s€@. 2) is given by

W=A+ B(Zroylrlvzcos(ﬁﬁ 0,=0,)+ 2,1 ,,C08(D + J,+ 5, 12, cos(ZZ)

N 1 1 (13)
=C, +4r0¥1r1’ZBcos( 2d n, cosﬁ’ﬁj cc{s q ®n, cos+dn, c(ﬂz;j ,

where C, = A+2r?,B cos( 4 n, 00582%) . In the case given by Egs. (7) the inverse

transmittance may be represented as

W=A+ B(Zroylrl’zcoi D,+3,-0) — 21,006 D+ 0+ 0) — 12, cds 2)3

B} . 1) . 1 (14)
=C, +4r, 1, Bsin szpzcosﬁzj sin 2f @p, cogrdp, cqé]z; ,
whereC, = A—erzB cos( 4 n, cosﬁ%} . In the case (9) we have
W=A+ B(2r1]2r2’3cos( D,+0,-0) + 2,5 ,5c06 D+ I+ )+ 12, cds a))
(15)

+ 1 1
=G +4r1,2r2,ﬁco{ mplcoi;l;j C{S # ®pn, cos;tdn, C@;} ,

1 . ,
where C; = A+2r/,B cos( 4 n, cogﬁ’lﬂ . Finally, if the parameters of the structure

satisfy the conditions giveby Eq. (11), one gets
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W= A+ B(2r1’2r213cos( D,+0,-0) - 2,5 ,5c06 D+ I+ ) - %, cds a))

(16)
=C/ +4r1’2r2'§35in( szplcosB%j sirE 2{ @n, cog,+dn, Cqélql) ,

whereC; = A-2r%,B cos( 4 n, cosﬁ’l%j :

W/ Wmax,min

Fig. 2. Inverse transmittance at
normal incidence (W, solid curve)
and envelopes of its minimums

(W™ dashed curve) and maxi-

mums (W™, dotted curve) for a

transparent double-layer structure

JE ;1 with  the parameters n, =1,

A7 U g Y =145 n, =170, ny=1.99,

0.001 0.0012 0.0014 0.701016 0.0018 0.002 dl =10|.Lm , d2 =1|.Lm (the condi-
174, nm tions of Egs. (5) is satisfied).

It is known that a beating appears when haomonic oscillations (see Fig. 3) with equal
amplitudesa and close frequencies andw+ Aw (Aw < w) are summing up [12, 13]:

y:acos(vvt)+aco£(w+Aw)t):a Co%(WJrA?W _A_W ]+a c{{ L Aw Aw ]

o) 2

max,min
iy

(17).

Fig. 3. lllustration of beating
arising as a result of summa-
tion of two vibrations given by
Eqg. (17) with the parameters
I a=0.1, w=10rad/s and

Aw=1rad/s: solid curve corre-
sponds to superposition of two
. . . . . . harmonic oscillations Yy, dotted
02 =44 curve to envelope of minimums

I I I min }
5 5 0 3 o Y and dashed curve to en

1, s velope of maximums y™*

0.1

Let us compare Egs. (13) and (17) for the case (5), Egs. (14) and (17) for the case
(7), Egs. (15) and (17) for the case (9), &usb. (16) and (17) for the case (11). This
draws a conclusion that the optical beatiags available in thénverse transmittance
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spectra observed for the doultdgrer structures of the typesnsidered above. They rep-
resent a clear analogue of the beating kntraum the vibration they (see Eq. (17)). Un-
ambiguous analogies (Table 1) can be mameng the parameters of the inverse trans-
mittance spectrum, for whichahoptical beating takes placand the parameters of the
mentioned vibration process. Modulation cureéghe inverse trasmittance (see Table
1) taken inside certain inverse-wavelengpitervals are envepes of the maximums

W™ while inside the other intervals thespresent envelopes of the minimuwig™ .

Table 1. Analogy of the optical beating atheé beating known from the vibration theory
(see Eq. (17)).

Inverse transmittance spectrum of transparent Sum of two harmonic vibrations
double-layer structure (Eq. (4)) (Eq. (17))
Inverse wavelength Time t
1/
47rd,n, cospB, for the cases (5) and (7); Frequencyw of one of the vibra-
47rd,n, cosB, for the cases (9) and (11) tions
471(d,n, cosB, +d N, cogB,) Frequencyw + Aw of the other
vibration

Condition for the beating undevhich peak-to-peak
amplitude of oscillations reaeh a value close to zero:

d,n, cospB, <« dn, cogB, for the cases (5) and (7); Aw<w
d,n, cosp, < dn, cogB, for the cases (9) and (11)

C; +4ryr, Beos(2m n, 0058% for the case (5);
- . 1.

C, +4ry,r, Bsin(2m n 2COS,BZE forthe case (7); |\ curve2ac0{A7Wtj

C/ +4r, 1, Becos(2m n, COSG% for the case (9);

C, +4r 1, Bsin(Zmd p 1c05,81% _for the case (11)

When dealing with the functiog(t) given by Eq. (17), it wuld also be convenient

to introduce the envelopes for the maximurg8¥) and the minimumsy™):

Aw
2a cos{7tj‘ , (18)

2a CO{A—Wtj
2

thus drawing the analogy with the envelopéshe inverse transmittance spectrum even
more vivid. That these functions are reallg gmvelopes is evidencég fulfilment of the
following inequalities:

ymax =

min _ _

y : (19)
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max

2aco{A7WtJ‘ -2 COEA—;Nt) coant)

y " -y=
: (20)
= 2aco{%’vtj‘( 1- cofwt) sg{n cgsAzlvtjD >
y— ymn :2aco{%t} coéwt) +ac SA?W'EJ‘
(21)

Aw
wheresgn{ co€7tﬂ = A
-1, when coE%th <

The analogues of the envelopg8®™" found in the inverse transmittance spec-

trum are the parameters
C; +|4ryr, Beos(2d n, 00582% ‘) , for the case (¢
C, +|4r, 1, Bsin(2md n, cos,(f’% ‘) , for the case (7

WM = 1 , (22)
C/ +|4r, r, Bcos(2md p, cosBl; ‘) , for the case (9

C, +|dr S, B sin(’z‘ndplcosﬂ% ) , for the case (1

C; —|4ryr, Beos(2r n, cosé’% ) ., for the case (¢

C, —|4ryry Bsin(2md n 20036’2/‘1 ’) , for the case (7
Wmin — ] . (23)
C - 4ry Jr, Bcos(2d n 00531] ‘) , for the case (9

C - 4r1’2r2,385in(27dplcos,8% ’) , for the case (1:

This fact may be easily proved in the same as for the case of Egs. (20) and (21), us-
ing the inequalitieV™* -W >0 andW -W™" >0.
The analysis of the relations fa¢™™" shows that there artwo possible func-

tions for the envelopes of thothe maximums and the minimums, which do not depend
on the phase thickness of the thickest lajé&e same conclusions are also true for the
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1

W) and the reflectance

envelopes of the transmittance T ™" =

(RMmIn W) spectra. It is worth noticing that the regularity explained by us

has in fact been used by the authors [9] wihregling the functions of spectral envelopes
for the structures with two layers. Laten it has been generalised for the multilayer
structures (see [10, 15]).

2.2. Optical beatings in the reflectance and transmittance spectra of multilayer
structures

When passing to the analysis mliltilayer structures, it is necessary to write down the
expression for the peak-to-peak amplitudehaf spectral oscillationsn order to define
the conditions predetermining how clearly theicad beatings manifest themselves in the
reflectance and transmittanspectra for an arbitrary multilar structure. The following
expressions for the envelopes of the reflemtaand transmittance spectra have been ob-
tained in the work [10]:

(Oos T Q.
in,max _ Oos + Osk+1X 0535
11 as,OUs,k+1Qs )

R’ (24)

2 .2
Tmin,max — M1 COS,Bk+1 TO,sTs,k+1Qs (25)
S 2
"o COSﬂo (1i Js,OJs,k+1Qs)

21mJ,

where Q =€ , S denotes the number of the layeith the largest phase thickness,

whereas ., Ojyu, Tju and y;,, @, 6;, are respectively the modules and the

phases of the complex quantitie§ f,; —F, i =x;.€7", F,=0,6""

and
~ ig o & . PR .
tiu=7; u€". Here fju andt;, are the reflection and transsion coefficients for the

structure j —(j +1) —--- —u, and ny and n,; mean the refractive indices of transparent
semi-infinite surrounding mediAs a consequence, the relations

4Qsas,k+1(ao,sas,o_)(Os)(as ,(leﬁ X QSQg -0 &)
(US,OUS,k+1QS _1)2(05,005 k+ ps +1)2

ARS — Rsmax _ Rsmin - 1 (26)

2 2 .2
4Qsas,oas,k+1TOsTs k+1

i N COoS
ATS — Tsmax _-I—Smln —_k+l :Bk+1

5 5 27)
Ny COSﬁO (a's,oa-s,k+1Qs_1) (US,OUSk+1QS+])

may be written for the peak-to-peak amplitsitetween the envelopgiven by Egs. (22)
and (23).
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The analysis of the latter expressions teestithat the minimum values of the ra-

ARsmln

max

tios

(i.e., ARy — O for the reflectance spectrum)eareached wheone of the

following conditions is satisfied:
(1) The module of the reflectiocoefficient for the structure—(s+1) —--- —(k +1)

is close to zerodg ., — 0);

(2) O 00%x+1X0sQ5 —Tos - 0. The relations f;, =-f,;exply;,) and
fj,ufu,j —fjufu,; =exply;,) are true for the transparent structure [16]. Then we have
Os0=0ps and xos =1, and the conditionu 402, 1 0sQ2 — T os — 0 may be rewrit-
ten asao’s(agkﬂ—l) - 0. This is satisfied at eithery s -~ 0 or gg 4 — 1.

(3) 05050~ Xos — 0. For the transparent structuréstisondition is equivalent to
the conditiongy ¢ - 1.

min

The minimum values of the ratiossTaX (i.e., ATg — O for the transmittance
S

spectrum) are reached when one effiilowing conditions is fulfilled:
(1) Osks1 » 05(2) 050 - 0;(3) o5 — 0; (4) Tsksa ~ 0.
The minimums AR of the reflectance spectrum and the minim A
ARSmax A-I—Smax
of the transmittance spectrum for the transpasémcture are reached when we have the
conditions of zero reflectance for onéthe two parts of the structu@—1---- — (kK +1)

separated by the thickest layer 0-1----—s or s—(s+1) —-- —(k +1) (see Fig. 4). In

case if one of these parts represents a single-layer strusta ¢r s=k —1), the opti-
cal beating manifests itself very clearly evhthe known antireflection conditions are sat-
isfied for such a structure [17]:

Nl:\/NoNz,dlzﬂ/Z"' 7:7, (28)
or

No=Np, 4 =7, (29)
{=0,1,... for s=2;

Nk =4 Nk—lNk+l’ 5k =72+ 7:7, (30)
or

Ng-1= Nys1, & =70, (31)
for s=k -1).
Here N; are the generalised refractive indices definedNas-n cosg for the s -
polarisation anad\; =&S’Bi (for p-polarization) [11].

N
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It presents no difficulty to make sure thia¢ conditions for thgeneralised refractive
indices given by Egs. (28)—(31) correspondhe conditions (9), (11), (5), (7) for the
Fresnel reflection coefficients.

In case if one of the mentioned parts esgnts a multilayer structure, the optical
beating appears to be clear (see Fig. 4) wiherphase thicknesses of any of the two lay-
ers in this part satisfy the cotidns of zero reéictance [10, 18].

The optical beating is alstlearly present when theansmittances of the struc-
turesO0—-1----—s or s—(s+1) —-- —(k +1) are minimal (see Fid), while their reflec-

tances are close to upifi.e., we have an ‘interference reflector’).

T T T T T

max,min O
RO,I] /RS 0.5

0.6
0.5

0.4

02 ™

0.1

Fig. 4. Reflectance at normal incidence (R, 4, solid curve) and envelopes of

its minimums (R | dashed curve) and maximums (R dotted curve) for
a transparent ten-layer structure with the thickest fifth layer and the following
parameters at A=A,: n,=1, n, =137, n,=1.70, n;=1.98, n, =2.95,
ns =197, n;=2.90, n,=190, ng;=2.20, ny=1.50, n,=2.70,
n,=4.0; 4=0.927rac, 0,=1.697rac, d;=1.640rac, J, =5.854rac,
05 =81.52 raq, Os =1.571rac, J;, =1.571rag, J; =1.351rac,

0 =1.293rac, J,,=1.236rac. A zero g, value is provided at A=A,
(dash-dotted curve).

3. Conclusions

A possible occurrence of an optical beatinghe inverse transmittance spectrum for a
transparent double-layer structure has bdemonstrated using an analogy between ana-
Iytical representations of the latter spentrand the beating phenomenon known from the
standard vibration theory. Once being drawn, the analogy has enabled us deriving ana-
Iytical expressions for the enepes of both the maximunand the minimums in the in-

verse transmittance spectrum. There are tfferdnt expressions for the envelopes that
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correspond to the two possible ratios besw the phase thickrees of the layersy, > J,
andg <4, .

The analytical conditions needed for cleaanifestations of the optical beatings
both in the reflectanceAR, — 0) and transmittance/T, — 0) spectra of an arbitrary

multilayer structure have beeetermined. For the transpatatructures these conditions
mean a closeness to zero or unity of teflectance of any part of the structure
0-1-----(k+1) separated by the thickest Ilayers (0-1-----s or

s—(s+1) - —(k +1)).

Rou/R;m'min YR I I Trn

0.8
0.6

0.4

0.2

1.8

Al 4,

Fig. 5. Reflectance at normal incidence (R, 4, solid curve) and envelopes of

its minimums (RY™, dashed curve) and maximums ( Ry, dotted curve) for
a transparent ten-layer structure with the thickest second layer and the fol-
lowing parameters at A=A,: n,=1, n =n;=n;=n,=ng=n;,=4.0,
N, =N, =Ng=Ng=Nn;,=1.40; 6,=0;,=9,=---=9,=712, 5,=101.5rac.
A value 0,4,=1 and a zero g, 4, value (dash-dotted curve) are provided at

A=A, and A =(A;,4,), respectively.
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Anomauia. Ilpedcmasreno amanozito Midc OnmuuHUM OUMMAM 6 O0OEepPHEeHUX CNneKmpax
NPONYCKAHHA NPO30poi 080UWAPOBOI cCIMpyKmypu i asuwem oumms, 8i0OMuM 3 meopii KOIUBAHb.
Busznaueno ymoeu, 3a Akux onmuune Oumms HauuimKiwe 6UAGNAECMbCA 8 IHmepgepeHyitinux
cnexmpax 0is 6azamoutaposoi cmpyKkmypu.
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