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Abstract 

We study the structure of supermodes of a double-ring array of identical evanes-
cently coupled single-mode fibres with the same coupling constant, which de-
scribes interaction between the fibres. We obtain the expressions for normal 
modes of such an array and the spectrum of their propagation constants. We 
show that these supermodes are represented by symmetric and antisymmetric 
combinations of supermodes of a single-ring circular array. 
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1. Introduction  

Since the seminal article by A. Jones [1], propagation of light in evanescently coupled 
fibre arrays has evoked a large amount of interest of both theorists and experimenters. At 
present, the physics of one- and two-dimensional infinite fibre arrays has been studied in 
detail in a number of works [2–4]. This is partially explained by a novel phenomenon of 
discrete diffraction, which takes place in waveguide arrays [5, 6]. Some interesting results 
have been obtained for the curved [7] and nonlinear [8, 9] waveguide arrays. Fibre arrays 
facilitate demonstrating a number of effects from the other fields of physics [10–12]. 
Moreover, they are used for creating optical beams with subwavelength resolution [13]. 
One can single out an important type of circular fibre array, which has been addressed in 
a number of studies [14–16]. A practical interest in these arrays is associated with their 
applications aimed at creation of cylindrical beams [17] and orbital angular momentum 
generation by the arrays [18, 19]. 

Nonetheless, only one type of the circular fibre arrays has been studied, a single-ring 
circular array. Meanwhile, it would be of great interest to go beyond the frameworks of 
single-ring array model. The aim of the present study is to develop a technique for obtain-
ing the structure of supermodes in a circular array, which consists of two concentric rings 
each composed of identical weakly guiding single-mode fibres. We generalise a method 
of eigenmodes suggested earlier [20, 21], on which basis we find the structure of super-
modes and the spectrum of their propagation constants for the double-ring array of identi-
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cal single-mode fibres. Here we limit our consideration to the case of double-ring arrays 
with equal values of the constants that govern evanescent coupling between the fibres 
belonging to different circles and the fibres of the same circle. 

2. Supermodes of double-ring arrays  

Consider a double-ring fibre array consisting of two concentric evanescently coupled cir-
cular arrays, each of which being composed of N identical single-mode fibres. The cen-
tres of the fibres are positioned at the vertices of homothetical polygons (N-gons) as 
shown in Fig. 1. The coupling between the nearest neighbours is supposed to be symmet-
ric and is described by the constant J. For step-index fibres, the coupling is given by a 
standard exchange integral, which may be brought to the form 

( ) ( ) ( )2 2 2 2 2
0

1
4 exp / 2 exp /0 0

0
coC k n L r r r J iLr r dx= ∆ − −∫  (1) 

Here L denotes the distance between the centres of the fibres, the radial coordinate r 
is associated with the centre of one of the two adjacent coupled fibres [15], 

( )2 2 22n n nco cocl∆ = −  (with nco  and ncl  being the refractive indices of the core and clad-

ding, respectively), 0r  is the core radius, k  the wave number in vacuum, and 0J  the 

zero-order Bessel function. To obtain Eq. (1), we have assumed that the field Ψ  of the 
fundamental mode is represented in the Gaussian approximation as [15] 
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,     (2) 

where E is some constant. Strictly speaking, such a symmetric exchange cannot be real-
ised in the system; however, it seems to be a good approximation if the distance between 
the circles is much less than the radius of the inner ring. When studying the modes of the 
array, we are to construct the perturbation matrix of the total Hamiltonian-like operator 
that describes propagation of light in it.  
 

 

Fig.1.(colour online). Schematic view 
(transverse cross-section) of a double-ring 
array and scheme of numeration of fibres 
in the array. 
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In the scalar approximation, propagation of light in the array of step-index fibres is 
governed by the waveguide equation 

( )2 2 2 2
t clk n V e et tβ∇ + + =� �� ,      (3) 

where ( )/ , /x yt∇ = ∂ ∂ ∂ ∂
�

, β�  is the propagation constant, and et
�

 the transverse part of the 

electric field introduced as ( , , ) ( , ) i zE x y z e x y e β=
� ��

. The perturbation V  may be written 

as 2 2
02 ( )co iV k n r r

i
δ= ∆ −∑ . It is assumed here that the i-th fibre is associated with a local 

polar coordinate system, in which the ir  coordinate is defined. For infinitely spaced fi-

bres, the solution of Eq. (3) may be represented as a linear superposition of scalar solu-

tions ( )rψ  localised at the i-th fibre: e c it i
i

= ∑ , with col(0,0... ( )...0,0)i rψ=  and ψ  

standing for the i-th place. As the separation of fibres becomes less, the modes of the in-
dividual fibres get combined and form some unknown linear combinations, which are 
conventionally called as supermodes. For obtaining the structure of such supermodes one 
can apply a standard procedure of perturbation theory in the presence of degeneracy, 
which is widely accepted in quantum mechanics [18] and has been developed for the 
coupled fibres in the works [20, 21, 23]. According to it, one should average Eq. (3) over 

the basis { }i  and determine the structure of supermodes on the basis of eigenvectors of 

the matrix obtained. As can be shown (see [20]), the matrix obtained in the nearest-
neighbour approximation for the one-dimensional infinite array of identical fibres has the 
following elements: 

( )2
, 1 1,ik ik i k i kH Cβ δ δ δ+ += + +� ,    (4) 

where ikδ  is the Kronecker delta. Imposing periodic boundary conditions i i N= + , 

one can describe a circular array of N fibres with the matrix elements given by Eq. (4). 
The first term on the r. h. s. of Eq. (4) is usually omitted since it does not affect the form 

of the eigenvectors. Here we will also omit dependence of the β�  constant on the radial 

number m. 
The dimension of the H-matrix for the double-ring array of 2N fibres equals to 2N. It 

is easily verified that in order to numerate the fibres as in Fig. 1, one should choose the 

following expression for the corresponding perturbation matrix 2NH  that determines the 

structure of the modes: 

1
2 1

N N

N N

M
H JN M

 =   
,     (5) 

where 1N  represents the unity matrix of the rank N and , 1 1,( )N ik i k i kM δ δ+ += + . It is evi-

dent that the matrix NM  just describes the circular fibre array. The problem of finding 

the supermodes of the double-ring array is equivalent to the problem of diagonalisation of 
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the matrix 2NH . To this end one should recall that the matrix NM  is diagonalised by the 

lattice Fourier transform expressed in terms of diagonalising unitary transformation: 

N N N NM U M U +=� ,      (6) 

where the elements of rank-N matrix NU  are given by 
1

( ) exp( )N kl kU i l
N
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(
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, where a rank-N matrix 0N  

has zero elements, one obtains 
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Here a diagonal matrix DN  is composed of the spectrum of the circular array of N 

fibres, so that we have 

( ) 2 cosND nnk nkδ ϕ= .     (8) 

Note that no summation over n is implied here. 
In order to diagonalise the matrix given by Eq. (7), let us introduce the matrix 
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. Using direct calculations, one can easily testify that 
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Since the matrices 1DN N±  are diagonal, the spectrum of the supermodes looks like 

2 2 (2cos 1)m mJβ β ϕ= + ±� .    (10) 

Notice also that the relation ( )2cos 1
2

m m
Jβ β ϕ
β

= + ±�

�
 follows from Eq. (10) [15]. 

The structure of the eigenmodes can be obtained through the following standard pro-
cedure. The state of the double-ring array is described by a 2N-dimensional vector 

2 1 1col( ... , ... ) col( , )N N N N NX q q p p Q P= ≡
�� �

, where qi  describes the amplitude for the i-th 

fibre in the inner ring, and pi  stands for the amplitude for the i-th outer-ring fibre. It is 

obvious that the eigenmodes of the system are given by the elements of the vector 

2 2 2N N NL C X
�

. It is convenient to express these eigenmodes in terms of the eigenmodes of 

the inner and outer rings ( Xm  and Ym , respectively), if they are taken separately [19]: 
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with 0,1... 1m N= − . After a little algebra, the expressions for the modes can be obtained 

in the following form: 

( )( ) 1

2m m mZ X Y± = ± .    (12) 

This form conveys the idea of in-phase and out-of-phase propagations of the super-
modes related to the inner and outer rings. 

Eqs. (10)–(12) solve the problem of the structure and spectrum of the supermodes 
for the double-ring array. The results obtained may be used while investigating the prob-
lems concerned with light propagation in the appropriate optical systems, in particular the 
problems of light channelling and discrete diffraction in circular arrays, and a Talbot ef-
fect occurring in the double-ring arrays. The mathematical method developed by us can 
also be applied to study more realistic models of the array assuming an asymmetric ex-
change. 

3. Conclusion 
In this work we have developed a technique of normal modes in order to study the struc-
ture of supermodes in a double-ring array of identical single-mode fibres. By using the 
perturbation theory with degeneracy, we have obtained the expressions for the super-
modes of such an array and the spectrum of their propagation constants. We have shown 
that these supermodes are given by symmetric and antisymmetric combinations of the 
supermodes characteristic of a single-ring circular array. 
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Анотація. Досліджено структуру супермод двокільцевого джгута ідентичних, радіаційно 
зв’язаних одномодових волокон з однаковим значенням константи зв’язку, що описує 
взаємодію між волокнами. Отримано вираз для нормальних мод цього джгута і спектр 
констант поширення. Показано, що його супермоди можна представити симетричною та 
антисиметричною комбінацією супермод однокільцевого круглого джгута. 


