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Abstract

We have analysed propagation of nonparaxial and paraxial beams perpendicular
to the optic axis in a uniaxially anisotropic medium (unbounded optically
uniaxial crystal). We have presented the paraxia solutions in the form of
generalised Hermite-Gaussian beams propagating perpendicular to the optic axis
in a uniaxialy anisotropic medium. We have also constructed the generalised
Laguerre-Gaussian beams at the z=0 plane and analysed their evolution in a
homogeneous isotropic medium. Comparing it with the evolution of standard
Laguerre-Gaussian beams with n=0 and m#0 in the crystal, we have revealed that
the additional elliptic deformation of the extraordinary beam results in topolo-
gical reactions that essentially distort the field structure for the account of
different rotation rates of the vortex row originated from the centred degenerate
optical vortex and the conoscopic pattern. We have predicted conversion of the
vortex topological charge at the beam axis similar to that in astigmatic lenses and
analysed the radical differences with this process. We have revealed synchronic
oscillations of the spin angular momentum and the sign of the vortex topological
charge at the beam axis.
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1. Introduction

Asarule, traditional description of abroad paraxial beam propagating orthogonally to the
optic axis in crystals is restricted by the frameworks of plane-wave approach. Each plane
wave is splintered into ordinary and extraordinary ones [1] at the crystal input. Since the
phase velocities of these waves are different, the initial polarisation state of the wave is
periodically transformed as the wave propagates along the crystal. More exact analysis
has shown that the extraordinary Gaussian beam in crystals has an elliptic shape, which
changes gradually when the beam is propagating, while the ordinary beam experiences
only scale transformations [2-4].

A circularly polarised singular beam bearing the optical vortex [5] (or ssmply a vor-
tex beam) brings its own correction into the propagation process. For example, the vortex
beam whose axis is dightly tilted to the direction orthogonal to the optic axis of crysta
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rotates when the crystal rotates around the axis perpendicular to the optic axis. The opti-
cal vortex then rotates separately from the host beam, taking part in complex precessional
and nutational motions. This unique property of the vortex allows one to create optical
reducers for devices facilitating trapping, rotation and transportation of micro-particles
[6]. Here the principal point is that the above processes do not break structural stability of
the singular beam, i.e. the vortex composition of the beam is permanent when propagat-
ing. Such afact has appeared strange from our point of view. Indeed, on one hand, differ-
ent field distributions in the ordinary and extraordinary beams must inevitably result in
spatial depolarisation of the beam; on the other hand, different scales along the x- and
y-axes must also yield distortion of the wavefronts of the partial beams, provoking phase
perturbations in the vicinity of the vortex core in each circularly polarised component and
inducing, ipso facto, transformations of the centred vortex composition.

Thus, the aim of thiswork is to analyse propagation of singular beams with elliptical
cross sections bearing high-order optical vortices and to estimate structural transforma-
tions of the vortex core and the vortex beam as awhole.

2. Basic equations and their solutions

2.1. Nonparaxial approach

Let us consider the wave motion of a monochromatic, circularly polarised singular beam
propagating perpendicular to the optic axis in an unbounded non-absorbing uniaxia crys-
tal (i.e., uniaxially anisotropic medium — see Fig. 1) with the permittivity tensor

(6 0 0)
F= L 0 & oJ . 1)
0 0 &

Fig. 1. Sketch of propagation of elliptic beam in optically uniaxial crystal.
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The Maxwell equations,

[(x EE-ik H, X H= ik D, D=¢E, 2
enable one to find solutions for the waves in the anisotropic medium with the material
tensor given by Eq. (1) in the form of two beam types, E-beams and H-beams. Let us
consider them separately.

E-beams
From Egs. (2) one can write the wave equation for the electric field E in the form

0% k*2E= 00 E), ?3)
where k stands for the wave number in the free space, as well as the equation

Sl(axEX+62EZ)+£20yEy =0. (4)
The latter equation may be written as

&= &
OB - 2719 yEy - (5)
1

Supposing the E, component to vanish (E, =0), we cometo the equations

O%Eg k’gEz= 0, O%Ex k’5E= O, (6)

0xEx = - 0,E;. (7

Eq. (7) reducesto the identity if
Ex= azq)E’ E, = _achE | 8

while Egs. (6) may be reduced to the single scalar Helmholtz equation for the function
O
0& =+ K’ = 0. 9)
Finally, we can trace out the solutions of the Maxwell equations for the E-beams
(or the ordinary beams) in the form

E,=0,Pg, (10)

E, =0, (11)

E,=-0,0,, (12)
i

H, = 0,0, (13)
i

H, :E(ai +02) g, (14)

__1
Hy == 05, ®c. (15)

In fact, the solutions given by Egs. (10)—(15) represent the vector field of nonparax-
ial beam propagating in a homogeneous isotropic medium with the refractive index

n = 5.
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H-beams
From Egs. (2) we can also write out the wave equation for the magnetic field H in
the form

DZH'*' kzng: - (‘91_ 52) (ex 0 7 € 0 x) @sz—a tz)- (16)
OyHy +0,H,+9,H, =0. (17)
Assuming the H,, component to vanish (H,, =0), we obtain
D2H 4+ k2gH,= - (51;—82) 9, 0 ,He-0 H,), (18)
2
|:|2HZ+ k2‘E\ZI.HZ: (51;—52) a X e ZHX_a XHZ)’ (19)
2
together with
o,H, =-0,H,. (20)
Substituting Eq. (20) into Egs. (18) and (19), we find that
ain+%a§Hx+a§Hx+k252Hx =0, (1)
1
92H, +%6§HZ +0%H, +k%e,H, =0. 22)
1
These equations are consistent provided that
HX = aZCDH y HZ = —axCDH y (23)
while the scalar function ®,, obeys the equation
&
20, +?ia§q>Hx + 2P, +k’s, @, =0. (24)

Thus, the electric and magnetic fields of the H-beams (or extraordinary beams) are

_ i
E, = 1 3B, (25)
E, = —l(a2 + ) oy, (26)

y K\Uz X

_ip
E, =1 95, 27)
H,=0,d,, (28)
H, =0, (29)
H,=-0,®,. (30)

In other words, the nonparaxial H-beam propagates through the uniaxia crystal as if
through a homogeneous isotropic medium with the refractive index n, = /&, . However,

such amedium has a particular property: it reveas different scales along the x- and y-axes
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(namely, @, =y (X,Y,2), sothat X =x and Vz%y). This circumstance enables us
y

to use the results obtained in Ref. [7] for nonparaxial ordinary and extraordinary beams
that propagate along homogeneous isotropic media, taking into account the refractive in-

dices n, and n, and also different space scaling for the extraordinary beam. Neverthe-
less, we will focus our attention on the paraxial vector beams, laying aside the nonparax-
ial approach.

2.2. Paraxial approximation for the E- and H-beams

Let the beam propagates aong the zdirection in such a way that

O, =We (% y,2)exp(ikn,,z) and the demand |92W|<<Kk|d,¥ is fulfilled. Then

Egs. (9) and (24) for the E- and H-beams are rewritten in the form

02w, +05W, +iz2k 0, W, =0, k, =kn,, (31)
I,.]2
02w, +n—§6§% +i2k,0,¥, =0, k, =kn,. (32)
The electric and magnetic fields of the E- and H-paraxial beams get the following forms.
E-beam:
E, =ik Wg €, (33)
E, =0, (34)
E, = -k_kx o, Wedk?, (35)
H,=0, (36)
k2
Hy = -iZ wed®?, (37)
~ kx ik .z
H, ~70yLIJEe xE (38)
H-beams:
E =0, (39)
kZ .
By =i Wi, (40)
- ky ik,z
E, = K o,W.e”, (42)
H, =ik W, €%, (42)
H, =0, (43)
Hz = _ax l'IJHeikyZ " (44)
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3. Elliptic beams
3.1. Basic relationships

Since the initial circular cross section of the H-beam at the plane z=0 turnsinto the el-
liptical one when transmitting through the crystal [3, 4, 6], we will find the solutions to
the paraxial equations (31) and (32) in the form of eliptic beams. The theory of elliptic
and astigmatic beams in free space has been developed and improved in a number of
works (see, e.g., [8-14]). A generd analysis of generalised Hermite-Gaussian and Her-
mite-Laguerre-Gaussian beams in the free space has been considered in the studies [15—
18]. Following Ref. 15, we will find a set of the generalised Hermite-Gaussian beams on
the basis of generatrix functions as the particular solutions to Egs. (31) and (32) in the
form

(0 - W Wy (_ N ) y2 \

- VW i) (w5, +ic. ) expL W +Hidy W +i(xJ ’ ()
( n_)%yz \

el L e PR

\/(szx +i(y)(w§y +i(y) &P Wiy +idy _Wiy +id,

where Wy, Wy, Wy, , Wy, are waists of the E- and H-beams at the z=0 plane (see Fig. 1)

and ¢, , = 2 ;. Let uschoosethe differential operatorsin the form

K.
AR (Bee) = (B —izx)”‘:%, AYL (Bye) =(Bye —izx)”‘%, (47)
A (B)= 81 16" A ) =[] (80 -6 25
In a quite similar manner, we can construct the operators I-Alg,”)E (,By,E) and
I—AI)(JT;)| (,BX,H),Where By EH ,,By,E,H stand for the complex parameters and Vz%y. In
particular, the operators have the important properties '
|imﬁxaw[ﬁixﬁ§m)]:%, |imﬁym{ﬁ—1yﬁ(y”)j:aa;n. (49)

The operators given by Egs. (47) and (48) commute with the operators
L =02 +02 +i2k,0, and L, = 0% +02 +i2k,d, of Egs. (31) and (32), respectively (see

[15]) and, consequently, with the functions LP(Em’”) =I:I(Em'”) LIJ(EO) and
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W =AW where A = AR and A = AT AL), are dlso the

solutions to the paraxial equations (31) and (32). Thus, the solutions to these equationsin
the form of the generalised Hermite-Gaussian beams are as follows:

(mn) _ m+n(:8xE IZX\Z(:ByE IZX\Z
We sz +|ZXJ W2 +|ZXJ

(50)
H, %,E xx H, y.E Xy LIJ(O)
LXJ (Bue -i6,][%8. i4,) LyJ e e, )
A By -id \g(ﬁ -ig \%
LP(m,n) —:mtn| PxH y y.H Y«
T e ) e i) o
( Ban + W, ) (n By +We )
Hm X, yX Hn Ty y,H w q_)(o)
LX\/(IBX’H —iZy)(wf,x +i(y)J Lny y\/(ﬂy,H 'Zy)(""f'y +i(y)J "
where we have made use of the relationship
ﬂe”‘2 =(-1)"H,,(x) e . (52)
ax™

In case if the parameters /B, g = Wy /Bye =Wy i/ Bt =W/ B =Wy

generatrix functions given by Egs. (50) and (51) are transformed into standard Hermite-
Gaussian beams:

3

./quzmﬂgg( Y
(mn) _men| Wi ~ 16 Xy 0) 53
e i) wéyﬂix H’“L JH”L&IWZ me(E 9
(Wi, 2 (w2, ~i¢, )2 vy
_imen] Wix TiGy 120 WGy 2 Yo (54)
N by LwészJ L |JH { W2, +|zy|J

If we have Big - @,B - @,Bn - ©,Bn - «©, Egs. (49) transform the generatrix

functions given by Egs. (50) and (51) into elegant Her mite-Gaussian beams:

n

m,n _.m+n( 1 \m( = ( - ] (
v = (e ic,) LJW%HZXJ HmLJfo”foHnu

)
J@,ﬁa
Wiy +i¢x

)

m n ( &
R LR L Vol onY

( ) 0
\/\NZYX+iZyJ L\/Wﬁy +iZyJ HmLWJ Hn{WJ W

(56)
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3.2. Generalised eliptic beamsin isotropic media

Let us consider at first some important properties of the generalised Hermite-Gaussian
beams in a homogeneous isotropic medium, which have not been focused at in Refs. 15—
18. Let us form the function

(3
Q=[&j ) (57
(,3_\
)
with Wy, =wy, Wy =Wy, By y e =By {xy =¢, 2=0 in Eqg. (50). It combines together
B

wy (B,
al of the three basic parameters [ ] vaz and L'B J of the generalised Hermite-

W2

y
Gaussian beam. The evolution of the beam cross section is shown in Fig. 2. When

(B,)
L J =1 and L'B J =1, the beam turns into the standard dliptic Hermite-Gaussian
% %
beam. It is the case that corresponds to the Hermite-Gaussian beams whose field distribu-
tion preserves along the z-axis up to the scale factor. All the other cases are accompanied
by vanishing intrinsic edge dislocations out of the plane z=0. When increasing the pa-

(B,
rameter L%} under the condition {'B Xj 1 (i.e., the beam perturbation is following the
y

line (%j =1), the edge dislocations along the y-axis vanish while those along the x-axis
X

(B

remain unchanged for z# 0. Vice versa, when the parameter L J increases under the

W2

(B,)
condition L&J =1, the edge didocations along the x-axis vanish while the didocation
y

(B
pattern does not change aong the y-axis. When k )_, 0, but L J;to and

(
Lﬁj =const, the amplitude of the intermediate intensity oscillations decreases along

W2

y

the x-axis at the z=0 plane. When we have (& - 0, ('By\ #0 and = const, the
) % () 2 J

y
oscillations decay along the y-axis. Findly, the generalised Hermite-Gaussian beam is
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. . . () (B,
transformed into the elegant Hermite-Gaussian beam, when LFX ) - o and LFJ > 00,
X y

The ellipticity of the spots in the intensity distribution of the beam is specified exclu-

W
sively by theratio [—y] at the z=0 plane.

Wy

12 Q

101

Fig. 2. Transformations of generalised Hermite-Gaussian beam
w,/wy, =05, z=0

Now let us form the generalised Laguerre-Gaussian (LG) beam and analyse its prop-
erties. For this aim we make use of the relation from Ref. 19 for the z=0 plane:

Wim) (220) = (X +iv)"LD(X2 +v2) =

p=0q=0 PG
In order to find the field distribution at the arbitrary z-plane, it is necessary that the
Fresnel integral operator F act upon Eq. (58) [18] such that
wm) (xy,7) = If[kll(m’”) (&n,z :0)] =

o lle{igclr ~v )9 (enjon

(58)

(59)

where v =¢,{ +ey77. Using Eq. (50) for an isotropic medium, we cometo

03923 500 () eI 20 8002 (60

p=0q=0 P

70 Ukr. J. Phys. Opt. 2011, V12, Ne2



Non-canonical propagation

where
_( ﬁx_iz\zmq ( By +W)% )
BN 2 B W R ) ©
_( ,By —iZ \2n+m—2p—q ( ,By +W2y \
H2n+m—2p—q (Y) _L W§ _iZ J H2n+m—2p—qu (,By —IZ)(W§ +iZ)J , (62)

and the normalised factor in Eg. (60) has been omitted.
For the high-order optical vortex embedded into the LG beam with n=0, Eq. (58) is
reduced to the form

. m- m

()™= 3 ()™ g (X) Hig (). &
4=0 q

so that the wave function is now transformed into

(eyi2) =3 (A TG OOH o) ¥ (v.) . (80

4=0 q
We have analysed the transformations of the standard elliptic LG beams with
B, = Wf,ﬁy = W§ Typica evolutions along the z-axis of the intensity and the phase dis-

=

.-————-._.___"_--_‘—'—-—

3

N

l_I_,(m,O

2.5mm

2z

==
=
=———
ﬁ __
—————

z=0 z=1mm z=>5mm z=10mm

Fig. 3. Evolution along the z-axis of intensity and phase distributions in the
elliptic beam with w, =30pm, w, =10pum (the refractive index n=2.3 and

the wavelength A =0.6328um).
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tributions in the eliptic LG beams with n=4, m=4 and n=0, m=4 are shown in Fig. 3.
Even a very small shift of the observation plane from the z=0 plane results in destroy-
ing the phase and intensity pattern as a whole in the both LG beams. However, the LG, 4
beam bearing both the four edge dislocations and the four-fold degenerate vortex forms a
more complex pattern than that shaped by the LGy 4 beam with only the four-fold degen-
erate vortex. The dliptic perturbation out of the z=0 plane just draws up the high-order
vortex into the row from four singly charged vortices, similar to that in the Ince-Gaussian
beams [11, 21], the vortex row being synchronously rotated when the beam is propagat-
ing. A more complex picture of destroying phase singularities occurs in the elliptic LGy
beam. The destroying process affects not only the degenerate centred vortex but also the
ring dislocations. As the beam propagates, the ring dislocations begin going to pieces,
forming a complex cluster of optical vortices. At the far field, the singly charged vortices
in the cluster gather together, recovering the ring dislocations. However, the degenerate
vortex state at the axis does not restore, in contrast to those described in Refs. 18 and 21.
Our computer simulations have shown that the distance between the vortices decreases
relative to a whole scale of the beam cross section, though the vortices are not centred at
the axis, at least at the distance up to 10 m.

3.3. Circularly polarised éliptic beam in the crystal
Thecircularly polarised electric field of the elliptic beam is shaped as follows:

E, =E,-iEy, E_=E +iEy, (65)
where the polarisation components E, and E, are specified by Egs. (33) and (40). In the

normalised form they can be written as

E, = We e, E, =iw, €9, (66)
so that Egs. (65) acquire the following form:
E, =weeh?vw, d%%  Eo =y ek -y, 697 (67)

Here we will deal only with the case of the standard elliptic beams, with the complex
amplitudes specified by Egs. (53) and (54). In order that the elliptic beam have only one
circularly polarised component a the z=0 plane (e.g., the E, component:
E_(z=0)=0), it is necessary to match the initia beam parameters (namely,

Wi = Wy = Wy, Wy =Wy ) SO that We (x,y,2=0) = Wy (x,y,2 =0):

yX
mn _[U;X\gfa* \g X ( y )
s E R E I R v T
(N2 (N [ Yo \
(mn) _; “yx “y X y )
h _L”ixx LUX HmL\&WxPVXHHnL\@WﬂJWU 4 )
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where o,, =1+iz/z,, 0, =1+iz/z =1l+iz/z

o Tyx =1+|z/zyy

yx» Fyy
Zo =KWZ 12, 2, =k W2 12, 7, =kyW2 12, 2 =(KE /Ky WE /2, and

P =2 eXp{— <Y j
Oy Oyy WOy WyOyy 70)

l.|J(O) _ 1 exp( _ Na B y2 \

E \ /nyayy L W, Ty Wy Oy J

Moreover, we will restrict ourselves only to consideration of the high-order vortex
beamswith n=0, whose transverse field components go over the form
m-q
mO qJ{o} |Igzz m+q[ ](0’ \Z(O'Xy\ 2 H [ J2x ) (\/Ey\ (71)
LJ J L ) qLWx|Uxx|J LWy|ny|)

q m—-q
(g V2(d ) 2 ( J2x ) ([ 2y )
_ w0 Jkz mg [ M yx Wy y
|L|J{ z( i) q[q]L_UyXJ L_Uny HqL—WXIUyXIJHm_qL—WyIUWIJ' (72)

g=0

Transformations of the intensity distribution along the crystal length z in such a vor-

tex beam are illustrated by Fig. 4. The difference of the wave numbers and the field dis-
tributions in the E, and E, components entails destructive interference that forms vor-

tex dipoles breaking a straight row of the vortices originated from the centred degenerate
singularity (see Fig. 3). At the sametime, the details of the transformation process depend
on difference of the ordinary (n,) and extraordinary (n, ) refractive indices of the crystal.

A large difference An=n, —n, results in different rotation angles of the vortex row in

y

each of the linearly polarised components. Besides, any additional perturbation causes

different deformations of the beam components along the x- and y-axes. The contributions
__200um 8mm

=S5mm z=15mm z=25mm z=35mm z=I1mm

Fig. 4. Transformation of intensity distributions in the E, component of the
vortex beam with n=0 and m=8 in the crystals with (a) n, =3, n, =2 and (b)

w, =50um, w, =30pum.
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of these processes to the far field manifest themselves in the form of a partial separation
of the beam ellipses shown in Fig. 4a at the distance z= 1 m. The beam overlapping is
negligibly small for small values An shown in Fig. 4b. In the far field, the basic vortices
gather together near the beam axis asin Fig. 3 for the ordinary beam, without forming the
centred degenerate vortex, while the additional vortices originated from the vortex
dipoles annihilate with each other. Eventually, the elliptically deformed conoscopic pat-
tern consisting of bright and dark hyperbolic lines is shaped both in the E, and E_

components.
50 pm 3um

q=-1 q=+1

Fig. 5. Polarisation distributions in the vortex beam: (@) distribution of
polarisation states on the background of intensity distribution of the vortex

beam with w,=10pum, w, =5um, n=0,m=4, n =25 n, =2 and
z=1mm, (b) distribution of polarisation ellipticity (, and (c) stream lines of
polarisation states on the background of ellipticity distribution.

The partial beam overlapping istightly coupled with homogeneity of the polarisation
states at the beam cross section. The polarisation inhomogeneity is associated with the
vortex topological charge in the beam. The higher the vortex charge the stronger the
polarisation inhomogeneity manifests itself. The patterns shown in Fig. 5 confirm this
supposition. Indeed, the centres of the splintered singly charged vortices in the linearly
polarised E, and E, components do not coincide with each other, forming a perturbed

phase gradient in the vicinity of the vortex cores in the circularly polarised components.
Fig. 5b illustrates distribution of the polarisation ellipticity g=zb/a (with b and a

being semi-axes of the polarisation ellipse). Interchange of the bright and dark spots on
the map of elipticity in Fig. 5b points out the sharp polarisation transformations in these
beam areas. The most visual characteristics of the polarisation state distribution is the
stream lines (the lines tangential to the major ellipse axis at each field point) [22]. The
patterns of these lines shown in Fig. 5c represent a vector dipole formed by the coupled
pair of the star and lemon [22]. When the €lliptic beam propagates, the vector dipoles ro-
tate around their mutual centres and roam about the beam cross section, changing radi-
cally the polarisation state of the beam as a whole. At the far field, the vector dipoles are
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drawn up together near the beam axis at the scale of the whole beam. In fact, the scale of
the beam increases in leaps and bounds, when compared with the distance between the
partial vortices. However, they cannot draw together at such a distance to annihilate,
preserving some polarisation disorder at any crystal length.

4. Spin angular momentum and conversion of the topological charge

Let us consider in brief aftermath of inhomogeneity of the polarisation state over the
beam cross section and a beam perturbation along the y-axis on the example of the low-
order vortex beam. Our question is whether the centred vortex changes the sign of its
topological charge when transmitting? To describe this process we rewrite the electric
fields of the E, and E_ componentsin Egs. (71) and (72) for n=0, m=1 near the beam

aXIS:

£~ p X tiap, Y EMD<p X tiap Y, (73)
WX Wy WX Wy
where
dBz ahz
A+_ = i L]
OO Txy  Oyx/ Oy Oyy (74)
( bz Az )
B, =a t :
N

The parameter a in Eq. (73) adjusts the core shape of the initial vortex at the z=0
plane. It is an independent parameter that can be inserted into the solutions (50) and (51)
as the amplitude factor.

The vortex state in each of the E, and E_ components can be described in terms of
the vectors fields w, = 0OpE and y_ =0OjE [23, 24] that characterise the local phase

distributions. The mathematical approach is based on the parameters similar to the Stokes
parameters used for the polarisation state of the beam:

+ + 2
=106 P S=9,6>0 .6,
st =0,E,0,E, +0,E,0,E., (75)
Sgi) :i(afo_rayF—_F _axF—_FayEi)

However, the above parameters characterise the vortex shape rather than the polari-
sation state. Deformation of the vortex core is described by the normalised parameter %(t)
in the form

*

i(04E20,E. —0,EL0,EL |

I0qE |2
In case of asimple vortex beam bearing the eliptically deformed and singly charged

(76)

+

vortex at the axis, the value é(z ) characterises the orbital angular momentum of the beam.
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+

In the more complex case the parameter f(z ) describes the state of the vortex core: the
modulus ‘f(zi)‘ is the dlipticity of the vortex core, whereas its sign gives the sign of the

vortex topological charge. The periodical curves plotted in Fig. 6a refer to conversion of
the vortex elipticity both inthe E, and E_ components. The sharp peaks on the curves
correspond to aternation of positive and negative vortex topological charges. The beat
length is defined by the ssmple relation A=A/

n, —ny|, where A is the wavelength in

vacuum. In our case, it is about A =3.15um. The conversion pesaks in theE, and E_

components are shifted relative to each other at the distance | = A/2. What is important,
the vortex conversion occurs within very small range of crystal lengths, a fraction of the
wavelength. Fig. 6b illustrates the shape of the vortex conversion line. Its linewidth is
about Al =0.25um . The peaks of the vortex conversion match with the transformation of

the polarisation states from the right-hand to left-hand and vice-versa, i.e. the sign of the
vortex charge and the handedness of the polarisation state change synchronically. In case
of the plane wave, such a polarisation transformation is accompanied by the total energy
transfer from one field component to another so that the vortex conversion cannot be ob-
served in principle. However, the finite width of the singular beams results in the spatial
field depolarisation both in the vicinity of the vortex core and for the beam as a whole. It
is the depolarisation process that enables one to observe the vortex conversion.

p(£) (%)
(:: 17 {: 14

0.5

11656  11.6611.662 11.6562 '11.6565;11.6557'11.6569
2 b

Fig. 6. Periodic conversion of vortex ellipticity along the crystal length z (in

cm) in the E, and E_ components (a) and shape of the vortex-conversion

line for w, = 2w, =10pm, n, =1.5,n, =1.7 and a=0.6 (b).

The conversion process occurs non-instantly but is accompanied by a chainlet of
topological reactions. Typical pattern of those reactions is tracked with the aid of evolu-
tion of the phase distribution shown in Fig. 7. The regular phase spiral depicted in the
first pattern of Fig. 7 characterises nearly idea state of the positively charged centred
vortex. The vortex charge sign is described by the handedness of the arrow in the
figure. Perturbation of the phase spiral is caused by the two topological dipoles born on
the dotted line in the next figure. One of the newborn vortices comes nearer to the centred
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vortex, causing phase unfolding. Then the topological dipole is again nucleated near the
centre when the beam is transmitting, the positively charged vortex remaining at the cen-
tre while the negatively charged one being attracted to the other off-axis vortex to annihi-
late. The phase pattern in the vicinity of the beam axis remains nearly regular, up to the
next cycle of the vortex conversion. The length of the conversion cycle is very short, be-
ing about 6z=0.32um .

0.5 mm

Az =0.61um Az = 0.68um Az =0.70um

Fig. 7. Evolution of phase distribution CD(r) for the E, component near the beam axis

r =0 along the crystal length z=7Z + Az in the area where the vortex is transformed (the
beam and crystal parameters are indicated in Fig. 6 and Z =11.656 mm).

Perturbations of the polarisation state at the beam cross section for account of the el-
liptical deformation of the extraordinary beam imply spatial light depolarisation and de-
scent of the amplitude value of the spin angular momentum. Phase difference along the
axial direction between the ordinary and extraordinary plane waves results in oscillations
of the polarisation state from the right-hand to the left-hand one. However, the other
plane waves in the angular spectra of the E- and H-beams acquire different values of the
dliptic polarisation, so that the beam as a whole is depolarised. The spin angular momen-
tum of the paraxial beam in uniaxial crystals can be calculated as [25]

(= )
aim jEXEydxdyJ

S =0 — , (77)
£ +[ey ooy

while the polarisation degreeis defined as
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2 [ EEy dxdy
P=——= . (78)
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Fig. 8. Evolutions of (a) spin angular momentum S, and (b) polarisation

state P along the crystal length z (in mm) for the vortex beam with the
parameters indicated in Fig. 6.

The results of our computer simulation of the S,(z) and P(z) parameters are

shown in Fig. 8. The oscillations of the spin angular momentum S, from +1 to -1 are

typical only in theinitial part of crystal length. The positions of spin angular momentum
changes coincide with those of the vortex sign conversion and have the same beating
length A. When the crystal length increases, the amplitude of the oscillation comes
gradually down to some utmost value unegual to zero. The envelope of the spin angular
momentum oscillations is the polarisation degree P . The utmost value of P(z) depends

on the beam waists w, and w, , and on the refractive indices of the crystal.

5. Discussion and conclusions

When analysing the beam propagation along the direction perpendicular to the optic axis
of the uniaxial crystal, we have derived the corresponding equations and found their solu-
tions in the form of the generalised Hermite-Gaussian beams. By manipulating these
beams, we have constructed the generalised Laguerre-Gaussian beams at the z=0 plane
and analysed their evolution in homogeneous isotropic media. We have shown that the
standard €lliptic Laguerre-Gaussian beam bearing the centred high-order optical vortex at
the initial plane z=0 is destroyed when propagating in such a way that the centred high-
order vortex is split into arow of singly charged vortices, while the ring dislocations are
split into a series of topological dipoles. All the vortices in this construction get mixed,
thus forming a complex combined singular beam. At the far field, the ring dislocations
recover a nearly regular structure, while the singly charged vortices near the beam axis
are not united into the centred high-order optical vortex at any beam length.
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We have traced propagation of the circularly polarised standard elliptic Laguerre-
Gaussian beam with the zero radia index n=0, bearing the m-charged centred vortex
along the crystal, the ellipse axis of the beam cross section being directed along the major
directions of the permittivity tensor. We have shown that the additional elliptic deforma
tion of the extraordinary beam results in topological reactions that cannot favour recover-
ing the initial singular structure. The degenerated centred vortex decays into arow of sin-
gly charged vortices when shifting slightly from the z=0 plane, as it takes place in free
space. However, the additional geometrical perturbations in the extraordinary beam result
in different rotation rates of the perturbed vortex rows in the ordinary and extraordinary
beams. In the long run, the form of the resulting beam is radically distorted at far field.
The beam loses its initial elliptic shape, while the conoscopic pattern in the form of dis-
torted hyperbolic lines paints the beam components up to irrecognizability. It is such a
complex picture of the field distribution in each circularly polarised component that
causes spatial depolarisation of the vector singular beam.

We have predicted conversion of the vortex topological charge in the singly charged
elliptic vortex beam, similar to that in the astigmatic lens[12] or optical fibres [26]. How-
ever, thereis aradical difference in these processes. First of al, the vortex conversion in
the astigmatic lenses or optical fibres is associated either with different curvatures of the
lens surfaces along the major astigmatic axes or variations of the refractive index of the
fibre cross section. In our case we dea with a homogenous medium. Nonetheless, the
symmetry of the optical birefringence in crystals causes a symmetry breakdown in the
extraordinary beam that spreads through the crystal changing the scale along one of the
crystallographic axes. At the same time, the resulting elliptic deformation of the extraor-
dinary beam provokes a perturbation of its helix wavefront. The destructive interference
between the unperturbed ordinary beam and the perturbed extraordinary beams entails a
chainlet of topological reactions in the vicinity of the beam axis and a periodic process of
vortex conversion at the beam axis.

In the second place, the singular beam with the converted vortex can propagate along
indefinitely large distances after the astigmatic lens while the life-length of the converted
beam in the crystal is considerably less or comparable with the light wavelength. Thisis
conditioned by the wavefront shape of the perturbed extraordinary beam. By all appear-
ances, it is the reason why this drastic phenomenon has not been revealed earlier.

Different field distributions in the ordinary and extraordinary beams are also associ-
ated with the peculiarities of spin angular momentum of the singular beam. The oscilla-
tions of the spin angular momentum of the vortex beam presented in this study are ac-
companied by spatial depolarisation of the field that decreases the spin angular momen-
tum amplitude. Notice that in case when the beam propagates a ong the optic axis of crys-
tal, any transformation of the spin angular momentum is compensated by the orbital an-
gular momentum in the form of the optical vortex generation, so that the sum of the spin
angular momentum and the orbital angular momentum is conserved. The axial symmetry
of the crystal in this direction enables dividing the spin angular and orbital angular mo-
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mentums from the mechanical angular momentum of the crystal medium, so that any
transformation of the spin angular momentum has an immediate impact on the orbital
angular momentum, without implicating the crystal medium in the process. For example,
a small beam inclination relative to the optic axis entails a non-local lateral shift of the
beam, in order to compensate the access of the orbital angular momentum [27], while the
mechanical angular momentum of the medium is not involved.

The beam propagation along the directions perpendicular to the optic axis breaks the
former symmetry. Naturaly, the vortex conversion in this case results in transformations
of the orbital angular momentum. But now the three processes take part in the phenome-
non. The spin angular and orbital angular momentums are supplemented by the response
of the crystal medium. It is the sum of these three processes that must reduce to conserva-
tion of the total angular momentum. Thus, the contribution of the vortex conversion to
these three processes needs more detailed theoretical and experimental investigations.

A peculiar question concerns the periodically repeated conversion of the centred vor-
tex sign. This process is synchronised with the conversion of the spin angular momentum.
From our viewpoint, synchronisation of these processes is associated with a phase match
between the E, and E, components of the beam. The conversion of handedness of the

circular polarisation occurs when the E, and E, components have the antiphase state.

However the vortex conversion near the beam axis is caused by a destructive interference
that requires also the antiphase state of the E, and Ey components. When the beam

waist is sufficiently large, aimost all the energy is transferred from the right circularly
polarised component into the left one under the conditions of the above match, so that we
have E, = E, and the vortex conversion cannot be observed in experiment. However, the

evolution of the spin angular momentum along the crystal length entails spatial depolari-
sation of light. There is no complete energy transfer between the beam components at the
beam cross section. It is this circumstance that should enable us to detect the vortex con-
version effect in the experiment.
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Anomauin. B pobomi npoananizo8ano nowupents napakciaibHux i He napaxkciaibHux npoMeHie y
HaNpsAMKY NEPReHOUKYIAPHOMY 00 ONMUYHOT OCI OOHOBICHO20 AHI30MPONHO20 cepedosuiya (He3-
MeJNCHUL ONMUYHO OOHOBICHUL Kpucman). 3anpononoeano napakcianbhuil po3e’ a30K y eu2nioi
3aeanvHux npomenie Epmima-I'ayca, axi nowupioromvca nepneHoOuKyiapHo 00 onmuyHol oci 6
00HOGICHUX aHizomponnux cepedosuwyax. Taxooc nobyooeani npomeni Jlaceppa-Iayca ons nio-
wunu Z=0 i npoananizosana ix eontoyis 6 0OHOPIOHOMY i30mponHomy cepedosuwyi. IlopieHiowyu
it 3 egonoyicio cmanoapmuux npomenie Jlazeppa-I'ayca 3 N=0 ma MZ0 6 kpucmanax eusigieno,
wWo 000amKo6a eninmuyHa O0eopmMayiss He36UYAHO20 NPOMEHS. NPUEOOUMb 00 MONOLO2IHHOT
peaxyil, wo cymmeeo 3MIHIOE CIPYKMYpPY NOJisL, NPU 8PAXYEAHHI PIHUX WEUOKOCMEN 00epmaHHs
HU3KU BUXOPIB, SIKI NOX00SIMb IO YEHMPOBAHO2O BUPOOHCEHO2O ONMUYHO2O BUXOPY | KOHOCKONIY-
Hol kapmunu. Ilepedbaueno KOHBEPCIiI0 MONONO2IUHO20 3apsady 8UXOPY HA OCI NPOMEHS, NOOIOHY
00 1acmueoi 011 ACMUSMamudHuX i3 I NPOaHanizoéani ioMiHHocmi 6 000X eunaokax. Ilpode-
MOHCMPOBAHA MONCTUBICIG CUHXPOHHUX OCYUNAYILU CNIHOB020 KYMOB02O MOMEHMY I 3HAKY MONo-
JI02T4HO020 3apA0Yy 8UXOPA HA OCI NPOMEHSL.
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