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Abstract 

In this work, pendulum fringe and X-ray interferometry methods are used for 
measuring Fhkl parameter, atomic dispersion amplitudes fa, dispersion corrections 

f ′∆ , and single decrements of refractive indices α for CaF2, LiF, NaCl and KCl 

single crystals. 
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1. Introduction 

Single crystals of alkali halides are widely applied in technologies of optical instrument 
engineering as elements of optical schemes, Х- and γ-radiation scintillation detectors, 
thermo-luminescent dosimeters and colour centre lasers [1–2]. From the standpoint of X-
ray diffraction, the above crystals are traditionally referred to typical representatives of 
ideally mosaic crystals [3–7]. However, advances in the technology of single crystal 
growth and X-ray topography methods have changed the conventional point of view. Ac-
quisition of pendulum fringes appearing at X-ray diffraction from these single crystals 
has confirmed directly a possibility for growing perfect single crystals [8]. 

In this work, the methods of pendulum fringes and X-ray interferometry [8–12] have 
been used in order to measure structural (Fhkl) and atomic (fa) dispersion amplitudes, as 

well as dispersion corrections  ( f ′∆ ) and single decrements (α) of refractive indices. Our 

studies have been performed using single crystals of CaF2, LiF, NaCl, and KCl grown 
from a melt along [100] direction. Topographic studies have shown that our single crys-
tals have dislocation densities ~ 102 сm–2 and, moreover, a presence of mosaic blocks in 
NaCl and KCl could not be avoided completely. Linear X-ray absorption coefficients of 
these single crystals are low, making possible topographic investigations of rather thick 

crystals (~ 1 сm). Notice that the optical parameters Fhkl, fa, f ′∆  and α mentioned above 

facilitate predicting unambiguously resources for application of single crystals in the 
short-wave X-ray optics. 
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It should also be pointed out that the above optical parameters have earlier been 
measured by many authors using classical techniques, e.g. the methods of integral intensi-
ties of X-ray dispersion, deviation from the Bragg’s law, and total external reflection. 
However, the corresponding measurement errors have been high enough (7–10% [3–5]). 
It is a high structural perfection of our CaF2, LiF, NaCl and KCl single crystals that has 
allowed us to apply, for the first time, interferometry-precision research methods. So, the 

pendulum fringe method enables measuring the Fhkl, fa and f ′∆  values with the errors of 

0.1–1.0%, while the X-ray interferometry yields the f ′∆  and α values for any amorphous, 

polycrystalline or single-crystalline material, being characterised with the errors as low as 
0.1–0.5% [8–12]. 

2. Experimental 

Traditional methods for determining the Fhkl and fa parameters are based on measuring the 
integral intensities of dispersion. Since the accuracy for the absolute values of integral 
intensities is low (7–10%), these methods have not gained wide acceptance. The pendu-
lum fringe method [12] makes it possible to determine Fhkl and fa without measuring the 
energy dispersion parameters. According to bidirectional approximation for dynamic 
scattering of X-rays, there are two coherent waves propagating towards each of reciprocal 
lattice nodes 0 and m, with the interference period [3–5] equal to 
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wave vectors), γ0 and γm are the direction cosines of the wave incident at a crystal and the 

diffracted wave, respectively, 
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classical electron radius, V the unit cell volume, λ the wavelength, e and m respectively 
the charge and the mass of electron, c the free-space velocity, and θ the diffraction angle. 

The structural amplitude Fhkl is as follows: 
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where u, v, w are the coordinates of the unit cell base atoms, and h, k, l are Miller indices. 
Inverse proportionality between the pendulum oscillation periods Λ and the structural 
amplitude Fhkl enables measuring, with a high precision (~ 0.1–1%), the absolute values 
of the structural amplitude Fhkl and, hence, the atomic amplitudes fa. 

Single crystals were made in the shape of wedges, with the apex angles of 1–3 angu-
lar degrees. X-ray diffraction from different atomic planes (hkl) was achieved using 
CuKα- and MoKα-radiations. The pendulum oscillations of X-rays observed in the dif-
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fracted beams were recorded on photoplates. The experimental procedures and the effect 
of different factors on the measurement accuracy have earlier been described in [12] and 
tested on dislocation-free Ge and Si single crystals. As an example, Fig. 1 illustrates the 
pendulum fringes seen in the case of CaF2 single crystals. A presence of clear-cut images 
of the pendulum oscillations testifies to high structural perfection of our single crystals. 

 

 

Fig. 1. Pendulum fringes observed in CaF2 single crystals: (200) reflection, 
CuKα-radiation. 

3. Results and discussion 
3.1. Structural and atomic dispersion amplitudes 

The structural amplitude for the fluorite obtained for the reflection planes (hkl) character-
ised by an even sum of indices (h + k + l = 2n) is equal to a sum (or difference) of the 
atomic amplitudes of calcium (fCa) and fluorine (fF). For any odd h + k + l = 2n + 1 value, 
the Fhkl factor represents a multiple of the calcium amplitude (fCa) [13]. Then one can de-
termine separately the atomic dispersion amplitudes for the Ca and F atoms, following 
from the Λ periods. 
 

Table 1. Structural and atomic amplitudes of CaF2. 

hkl Н

ТF  DТ

ТF  Р

eF  DТ

Т f F  DТ
Тf Ca  Р

ef F   Р

ef Ca   

111 60.40 62.17 60.30 7.41 15.541 – 15.11 

220 93.80 96.96 96.03 5.72 12.785 5.92 12.37 

311 45.60 46.52 44.17 5.05 11.63 – 11.04 

222 8.00 6.78 7.70 4.81 11.32 4.38 10.68 

321 8.42 7.32 8.60 4.46 10.74 3.98 10.02 

400 72.11 74.37 77.10 4.16 10.27 4.6 10.18 
 

Table 1 gathers the values of the structural amplitudes Н

Т
F  calculated with the Har-

tree-Fock method and taken from [14], the amplitudes DТ

Т
F  calculated with accounting 

for relativistic correction constants and taken from [15], along with the amplitudes Р

eF  

measured experimentally in this work basing on the pendulum fringe periods Λ. The 
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theoretical and experimental atomic dispersion amplitudes of Ca and F can also be ana-

lysed. Here the )Ca(Р

ef  and )F(Р

ef  parameters have been calculated from the experi-

mental values Р

eF  for different reflections (hkl). Dispersion corrections f ′∆  and f ′′∆  

taken from [14] have been introduced to the experimental Р

eF  values (one has 

Caf ′∆ = 0.2, Caf ′′∆ = 0.4, and FF ff ′′∆=′∆ = 0 for the case of MoKα-radiation). The spread 

between the experimental ( Р

eF ) and calculated ( DТ

Т
F ) values is 2–5%. In our case it 

would be necessary to take into account the contribution of both dispersion and tempera-
ture effects to the X-ray dispersion amplitudes. That will be done later, since the absence 
of reliable experimental values Fe in this work has hindered the more detailed analysis. 
 

Table 2. Structural amplitudes of LiF. 

hkl Н

ТF  DТ

ТF  1Z
eF  2Z

eF  Р

eF  

111 18.16 19.72 19.00 – 19.81 

200 29.51 30.12 27.10 23.70 30.05 

220 22.18 22.92 21.00 19.70 21.41 

311 8.93 9.62 9.31 – 9.33 

222 18.24 18.64 16.70 – 18.67 

400 15.24 15.73 13.90 13.30 15.46 
 

Table 2 represents both the theoretical and experimental structural amplitudes for the 
LiF single crystal using the notation assumed earlier. We have also analysed the values 

1Z
eF  and 2Z

eF  obtained experimentally by Zachariasen [16] for spherical LiF samples, 

basing on the integral dispersion intensities for the MoKα- and CuKα-radiations, respec-

tively. The Р

eF  values listed in Table 2 account for both the dispersion and temperature 

corrections [8, 12]. Notice that DТ

Т
F  > Н

ТF . There is satisfactory agreement between the 

Р

eF  and DТ

Т
F  values (see Table 2). The values 2,1Z

eF  are scattered by ~ 10% as com-

pared to DТ

Т
F  and Р

eF , which lies within the limits of experimental errors for the integral 

dispersion intensities [16]. 
Table 3 displays the structural amplitudes FT,e for the NaCl and KCl single crystals. 

The values Р

eF  are given with the temperature and dispersion corrections taken from 

[14]: Naf ′∆ = 0.1, Naf ′′∆ = 0.2, Kf ′∆ = 0.3, Kf ′′∆ = 1.1, Clf ′∆ = 0.3, and Clf ′′∆ = 0.7. There is 

fair agreement between the experimental and theoretical structural amplitudes. At the 

same time, the errors for the structural amplitudes P
eF  has increased up to 2–5%, as a 

result of presence of different dislocations, stresses and block boundaries in the NaCl and 
KCl samples. 
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Table 3. Structural amplitudes of NaCl and KCl. 

NaCl KCl 
hkl 

Н

ТF  DТ

ТF  Р

eF  Н

ТF  DТ

ТF  Р

eF  

111 19.09 18.57 20.01 5.72 5.68 6.04 

200 85.15 85.82 86.45 113.82 113.83 111.51 

220 72.28 72.79 74.07 97.14 97.27 92.72 

311 11.39 10.66 13.68 6.57 6.51 6.87 

222 63.64 64.81 63.82 86.60 86.66 89.05 

400 58.27 59.15 62.46 79.25 79.35 77.14 

3.2. Single decrements of refractive indices and dispersion corrections 

It is well-known that the phase velocity v of electromagnetic wave propagating in crystal 
differs from the velocity с in vacuum. As a consequence, wave refraction takes place at 
the interface crystal–vacuum, with the appropriate index  

βα i
v

c
n −−== 1 .     (3) 

Here µ
π
λβ

4
= , where µ is the linear absorption coefficient. In the range of X-ray wave-

lengths, single crystals of CaF2, LiF, NaCl and KCl can be considered as non-absorptive 
and so we have n = 1 – α. The parameter α (α ≈ 10–6) is called as a single decrement of 
the refractive index. 

The atomic dispersion function fa in a wide range of wavelengths is equal to [3–5] 
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2

2 2a
g

f
i

ω
ω ω γω

=
− +

,    (4) 

where ω is the frequency of radiation incident at a crystal, ωg the intrinsic frequency of 

atomic oscillations, and the coefficient γ  equals to 
2

7
3

2
10

3

e

c

ωγ −= ≈ . Separating real and 

imaginary parts in Eq. (4) yields 

fifffa ′′∆+′∆+= 0 ,    (5) 

where the values ∆f' and ∆f" coincide respectively with α and β appearing in Eq. (3), 
within the accuracy of constant factors. Therefore, the X-ray refractive index n is deter-
mined in terms of the atomic dispersion function [3–5]: 

af
mc

eN
n

2

22

2
1

π
λ−= .    (6) 

If ω ≈ ωg, there appear resonance effects resulting in abnormal absorption of X-rays. 
As shown by experimental investigations, the dispersion effects cannot be ignored com-
pletely even in the case of ω >> ωg. 
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Classical methods for studying n(λ) and ∆f'(λ) have essential drawbacks associated, 

e.g., with infinitesimal α values and inaccurate measurements of angles and integral in-

tensities. As a result, the accuracy for those parameters is greatly reduced (down to 7–

10% [3–5]). On the contrary, this study employs the pendulum fringe and the X-ray inter-

ferometry methods [8–12] related to interference pattern geometry, rather than measuring 

the energy parameters themselves, and so they enable n and ∆f' to be measured with much 

higher accuracy (~ 0.1–0.5%). 

The pendulum fringe method accounts for the contribution of dispersion effects to 

the structural amplitude (Fhkl ± ∆Fhkl), resulting in a change of pendulum oscillation peri-

ods Λ given by Eq. (1). For the CaF2 single crystals, we have used reflection of X-rays 

from the crystallographic planes (111). Then the dispersion corrections for the fluorine 

atoms can be ignored, since we have ∆f'F = 0 for both the CuKα- and MoKα-radiations 

[14]. Therefore, the pendulum fringe period for these cases may be assumed as a refer-

ence one. Moreover, the structural amplitude F(111) is determined only by the atomic am-

plitude of calcium, F(111) = 4fCa. 
 

Table 4. Dispersion corrections ∆f' for Сa in CaF2 crystals. 

λ, Å Bf ,
Ca′∆  Cf ,

Ca′∆  Pf ,
Ca′∆  

0.70926 0.22 0.203 0.220 

1.47634 – – 0.324 

1.5405 0.28 0.341 0.308 

1.65784 0.23 – 0.290 

1.78892 0.16 – 0.278 

2.28962 –0.41 –0.201 –0.250 
 

Table 4 represents the experimental values Pf ,
Ca′∆  obtained for the CaF2 crystals  is-

suing from the pendulum fringe periods in the wavelength range of 0.7–2.2 Å. Notice that 

the absorption edge for Ca amounts to λK = 3.0702 Å [14]. For comparison, the calculated 

values Bf ,
Ca′∆  [17] and Cf ,

Ca′∆  [18] are also shown in Table 4. The experimental results 

Pf ,
Ca′∆  agree well with the Cromer’s theory [18], where the dispersion corrections ∆f' and 

∆f'' are calculated using the relativistic Dirac-Slater wave functions. We also emphasise 

that the pendulum fringe method provides determining the dispersion corrections  sepa-

rately for each sort of atoms in complex crystal lattices. 

The X-ray interferometric method [8, 12] involves measuring an interference fringe 

shift due to a change in the optical path occurring in one of the interferometer arms upon 

introduction of a sample under study. The shift ∆N is related to the single decrement α of 

the refractive index via the relation 
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( )1 1 a
N

n n
t

λα ∆= − = + − ,    (7) 

where t is the crystal thickness and na the refractive index of air. Fig. 2 illustrates a shift 
in the Moiré fringes observed after introduction of a wedge-shaped CaF2 sample. 
 

 

Fig. 2. Moiré fringe shift observed for the wedge-shaped CaF2 sample using 
CuKα - radiation. 

In order to measure the parameters ∆f' and α for the CaF2, NaCl and KCl single crys-
tals, we have used Kα-radiations of Cu, Ni, Co, Fe and Cr anodes. Table 5 gives the val-

ues Pf ,′∆  and P
eα  for those crystals, along with the values C

Tα  calculated with the dis-

persion corrections  for the individual atoms, according to Cromer [18]. 
 

Table 5. Dispersion corrections ∆f' and single decrements of refractive indices α for the 

crystals under study 

CaF2 NaCl KCl 
λ, Å 

P
eα ,10–6 P

ef ′∆  C
Tα ,10–6 P

eα ,10–6 P
ef ′∆  C

Tα ,10–6 P
eα ,10–6 P

ef ′∆  C
Tα ,10–6 

1.5405 7.668 0.167 7.642 6.748 0.221 6.695 6.249 0.378 6.185 

1.65784 8.875 0.149 8.830 7.821 0.243 7.154 7.236 0.309 7.163 

1.78892 10.330 0.137 10.281 9.115 0.269 9.028 8.417 0.334 8.340 

1.935997 12.090 0.120 12.041 10.683 0.291 10.573 9.854 0.302 9.767 

2.28962 16.782 0.102 16.995 14.947 0.299 14.789 13.739 0.204 13.842 

4. Conclusions 

1. The atomic and structural amplitudes and the dispersion corrections  are determined for 
the first time for the CaF2, LiF, NaCl and KCl single crystals, using highly precise 
pendulum fringe and Х-ray interferometry methods, with no direct measurements of 
the energy dispersion parameters. 
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2. Unlike the X-ray interferometry method, the pendulum fringe method has enabled 
measuring the fa and ∆f' parameters separately for each atom in a chemical compound, 
as shown on the example of CaF2 crystal (see Table 1). 

3. The above methods may be successfully used in the range of Х-ray wavelengths, even 
in the vicinity of K-edge of absorption, which is impossible in frame of the integral in-
tensity method. 

4. According to the Hartree-Fock method used in [14, 17], the atomic dispersion ampli-
tudes fa are calculated using a nonrelativistic form of wave equation, while the wave 
functions are presented as a product of the wave functions of separate electrons (a self-
consistent field approach). On the contrary, the method by Cromer [18] employs the 
Dirac-Slater wave functions that take into account both the relativistic effects and the 
influence of normal and abnormal dispersion effects. As a matter of fact, our experi-

mental values Р

eF , Р

ef  and Pf ,′∆  show a better agreement with the Cromer’s theory. 

Summing up, the comparison of the experimental and the calculated α and ∆f' pa-
rameters testifies that the normal and abnormal X-ray dispersions in our crystals are most 
completely described by the Cromer theory [18]. 
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Анотація. В роботі використані методи маятникових коливань та X - променевої інтер-
ферометрії для вимірювання параметра Fhkl, дисперсії атомних амплітуд fa, дисперсійних 
поправок f ′∆  і одиничних декрементів показників заломлення α монокристалів CaF2, LiF, 

NaCl і KCl. 
 
 

 




