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Abstract 

We present the results of analysis for the refractive indices and the ellipticity of 
eigen waves under the conditions of coexisting gyration and weak optical activ-
ity. Quantitative relations describing the appropriate parameters are derived. It is 
shown that the ellipticities of eigen waves become different and one of that 
waves acquires a complicated (longitudinally-transverse) elliptical polarisation 
state. This represents a new type of electromagnetic eigen waves in crystals.  
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1. Introduction 

Optical activity is described with taking into consideration an inhomogeneity of the elec-

tric displacement jD  of an optical wave propagating through a medium: 

0 j
i ij j ijk

k

D
E B D i

x
γ

∂
= +

∂
,     (1) 

where iE  denotes  electric field, 0
ijB  the optical-frequency impermeability tensor without 

accounting for spatial dispersion effects, ijkγ  the third-rank antisymmetric polar tensor 

( ijk jikγ γ= − ), and kx  the coordinate. Using the known duality relation, 

2
ijk ijl lkg

π γ δ
λ

= ,      (2) 

one can write the tensor ijkγ  as an axial asymmetric second-rank gyration tensor lkg , 

with ijlδ  being the unit antisymmetric Levi-Civita tensor and λ  the wavelength of light. 

Then simple transformations valid for a plane electromagnetic wave, yield in  
0( )i ij ijl lk k jE B i g m Dδ= + ,     (3) 

where 
2

k kk m
π
λ

=  is the wave vector of light and km  the unit vector parallel to kk . The 

asymmetric gyration tensor can be decomposed into its symmetric and antisymmetric 
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parts: 
s as

lk lk lkg g g= + ,      (4) 

where the antisymmetric part is dual to some polar vector rh , 

as
lk lkr rg hδ= ,      (5) 

and describes a so-called weak optical activity [1–6], while the symmetric part takes ac-

count of a usual optical activity often called as a gyration. 

In our recent study [7] we have shown that the refractive indices 1 2,n n , the optical 

birefringence 32n∆  and the ellipticity of the eigen waves κ  in the presence of the pure 

weak optical activity are described by the following relations: 
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where 02n , 03n  and 0
32 03 02n n n∆ = −  are respectively the refractive indices and the bire-

fringence for the case if the spatial dispersion is disregarded, and 02 03( ) / 2n n n= +  is the 

mean refractive index. 

The weak optical activity manifests itself as a single crystal optical effect, i.e. with-

out the accompanying ordinary gyration, in the crystals or other anisotropic media which 

belong to the point symmetry groups 3m, 4mm, 6mm, and mm∞ . On the contrary, the 

weak optical activity is forbidden by the symmetry in the gyrotropic crystals which have 

the symmetry 222, 32, 422, 432, 42m , and 4 . At the same time, the both effects coexist 

in the gyrotropic crystals of the point symmetries 1, 2, mm2, m, 3, 4, and 6. Thus, a rea-

sonable question appears in the latter case: how does the coexistence of the ordinary and 

weak optical activities affect the character of electromagnetic eigen waves and their re-

fractive indices? We would like to remind in this respect that, in the presence of the weak 

optical activity only, an initially linearly polarised wave with its polarisation parallel to 

the higher-fold symmetry axis (in particular, the optic axis, i.e. Z axis) is transformed into 

a longitudinal elliptically polarised one after passing through the crystal. In other words, 

the electric field component E1 of the wave becomes nonzero when the light propagates 

along the X direction. The orthogonal eigen wave, which oscillates parallel to the Y axis, 

remains linearly polarised at the same conditions. 

The present work is devoted to analysis of the eigen waves and their refractive indi-
ces for the most general case when the weak optical activity and the ordinary gyration are 
superimposed. 
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2. Refractive indices and the ellipticity of eigen waves  

In the presence of both the weak optical activity and the ordinary gyration Eq. (3) may be 
written as 

[ ]0 0

0
1 2

( ) ( )

( ) .

s as s
i ij ijl lk k ijl lk k j ij ijl lk k ijl lkr r k j

ij j

E B i g m i g m D B i g m i h m D

B i i D

δ δ δ δ δ= + + = + + ×

= + ∆ + ∆
  (7) 

To begin with, let us consider an anisotropic optically uniaxial crystal in which only 

ordinary gyration exists ( 1 11 0s
ijl lk kg m gδ∆ = = ≠ , [ ]2 3 0ijl lkr r kh m hδ δ∆ = × = =  and 

0 0 0
11 22 33B B B= ≠ ). Let the optic axis be parallel to the Z axis and the optical wave propagate 

along the X direction ( 2 3 10, 1m m m= = = ). The matrix that couples the components of 

the electric field and the electric displacement is given by 
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so that we get the following system of equations: 
0
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      (9) 

The impermeability tensor components and the refractive indices with taking of the 
gyration into account are equal to 

0
11 11

2 3 2
1 11

22 2 2 2 0
2 02 02

2 2
03 02

2 3 2
1 11

33 2 2 2 0
3 03 03

2 2
03 02

,

1 1 1
,

1 1 2

1 1 1
,

1 1 2

n

n
n

n
n

B B

n g
B

n n n n
n n

n g
B

n n n n
n n

=

  ∆= = − + 
∆  −

  ∆= = + − 
∆  −

�

�

   (10) 

1 01

6 2
11

2 02 0

6 2
11

3 03 0

,

,
4

,
4

n

n

n

n n

n g
n n

n

n g
n n

n

=

= −
∆

= +
∆

       (11) 

where n  and 0n∆  imply the average values of the refractive indices and the initial 

birefringence, respectively. As seen from Eqs. (10) and (11), the account of the gyration 
leads to changes in the impermeability components and the refractive indices, i.e. 
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22 11 1 2,n n n nB B n n≠ ≠ . Notice that the above equations coincide with those presented, e.g., in 

the monograph [8] for description of the refractive indices of anisotropic media modified 
by the gyration. Hence, the ellipticities for the linearly polarised incident wave parallel to 
the Y and Z axes are determined by the relations 
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(2) 0 0
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(3) 0 0
3
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, ,
2 2

D n g n g
i i

n nD

D n g n g
i i

n nD

κ κ

κ κ

= − = − = −
∆ ∆

= = =
∆ ∆

   (12) 

respectively. The ellipse of polarisation in case of the pure ordinary gyration effect lies in 
the ZY plane. 

Considering the relations derived above, in the presence of the weak optical activity 

( 2 0∆ ≠ ) we arrive at the matrix 

1 3

0
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3 2 33
n

D D
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E i B

∆

− ∆

      (13) 

and the system of equations 
0
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= − ∆ +
      (14) 

Since 2 3 2
33 03 1 / 2nB n n n−= − ∆ ∆ , the impermeability tensor components modified by the 

mutual influence of both the ordinary gyration and the weak optical activity are found to 
be 
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We mention that these relations are reduced to Eqs. (10) at 2 0∆ = , while at 1 0∆ =  

one readily obtains the formulae obtained in the work [7]. Let us now take into account 

that 0 2 6 2
14 n n∆ ∆�  and make use of the fact that 1 11g∆ =  and 2 3h∆ =  in our geometry. 

Then Eqs. (15)  may be simplified, resulting in 
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  (16) 

The corresponding refractive indices become as follows: 
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Therefore the birefringence occurring for the light propagation along the X axis is 
given by the relation 

6
0 2 2

23 2 3 23 11 30

1

22

n
n n n n g h

n

 ∆ = − = ∆ + − 
 ∆

.   (18) 

Following from Eqs. (14) and (16), one can derive the ellipticity of the eigen waves 

polarised in the ZX plane as 1

3

D
i

D
κ=  for the case when the linearly polarised incident 

electromagnetic vibration is parallel to the X or Z axis: 
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It is worthwhile that Eqs. (19) may be simplified to the form given by Eq. (6) if only 

11 0g = . Moreover, the ellipticity is equal to zero under the condition 3 0h = . 

Using Eqs.  (9) and (16), one can determine the ellipticity of the eigen waves for the 
other case of linearly polarised incident vibrations parallel to the Y or Z axis (i.e., those 
located in the ZY plane): 
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As one can see from Eqs. (20), simultaneous existence of the ordinary gyration and 
the weak optical activity leads to a difference in the ellipticities of the eigen waves with 
the Z and Y polarisations (the light propagates along the X direction). Namely, the elliptic-
ity of the wave with the polarisation parallel to the Z axis depends on both the ordinary 
gyration and the weak optical activity, while that of the wave polarised along the Y axis is 
a function of the ordinary gyration only. Notice that the absolute magnitudes of the ellip-
ticities of the eigen waves are the same if the ordinary gyration is only present (see 
Eqs. (12)). 

The longitudinal component D1 in our case remains the same as in the case when the 
weak optical activity is only present (cf. Eqs. (6) and (19)). Thus, the coexistence of the 
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gyration and the weak optical activity transforms the initial linearly polarised wave with 
the polarisation direction parallel to the Z axis into the wave whose polarisation is of a 
‘mixed’ longitudinal-transverse elliptical type (see Fig. 1). As far as we know, this repre-
sents a novel type of the eigen waves in crystals. The ratio of the displacement vector 
components is defined as: 

(3)
2 11
(3)

31

D g

hD
≈ .     (21) 

As seen from Eq. (21), traditional polarimetric methods (see, e.g., [9]) for the studies 
of ellipticities of emergent waves can be employed in order to reveal the weak optical 
activity. For instance, this may be accomplished after comparison of the ellipticities of 
waves initially polarised parallel to the Z and Y axes. 

 

Fig. 1. Polarisation of eigen waves under conditions when the ordinary gyra-
tion and the weak optical activity are superimposed. 

3. Conclusions 

As a result of the present study, the relations describing the components of the imperme-
ability tensor, the refractive indices, the birefringence, and the ellipticities of the eigen 
waves have been derived for the general case of superimposing ordinary gyration and 
weak optical activity. Basing upon our analysis of the ellipticity of polarisation and the 
refractive indices of the eigen waves characteristic of the crystals with coexisting gyration 
and weak optical activity, one can draw a number of important conclusions. The first is 
that the ellipticities of the eigen waves become different. Since this difference appears 
owing to the presence of the weak optical activity, one can suggest a purely polarimetric 
technique for revealing this phenomenon. 

The second conclusion is that the polarisation state of one of the eigen waves (that of 
which major axis of the polarisation ellipse coincides with the direction of the constitutive 
vector of the weak optical activity) acquires a rather complicated form. It represents a 
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longitudinally-transverse elliptical polarisation. This novel eigen state of polarisation 
comprises the two elliptical states, one of which is transversely elliptical and the other 
longitudinally elliptical. 
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Анотація. У роботі представлено результати аналізу показників заломлення і еліптично-
сті власних хвиль за умови співіснуванні гірації і слабкої оптичної активності. Отримано 
кількісні співвідношення, що описують дані параметри. Показано, що еліптичності власних 
хвиль відрізняються. Встановлено, що одна з власних хвиль набуває нового, складного поля-
ризаційного стану – так званої поздовжньо-поперечної еліптичної поляризації. 
 

 


