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Abstract 

For characterisation of doped optical fibres (DOFs) based on single-beam 
propagation, one requires a maximum DOF length along which a signal power 
can propagate. In this work we have solved the rate equation for the single-beam 
propagation in both lossy and lossless DOFs, introduced an influence length as a 
maximum propagation length and then determined it analytically. With the 
analytical results obtained, the main regularities for the influence length have 
been simulated for the glass optical fibres doped with Ge/Al/Er operating at 
arbitrary wavelengths under lossless and lossy conditions. Also, the influence 
length has been determined for some kinds of co-dopants present in both 
polymer and glass optical fibres. The influence length thus defined may be useful 
in any measurements based on the single-beam propagation in DOFs. 
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1. Introduction 

Optical fibre lasers and amplifiers made as doped optical fibres (DOFs) have many 
practical applications in industries and medicine. A number of characteristics of DOFs 
should be determined prior to designing these components. Some parameters of DOFs, 
such as dopants’ concentration and fluorescence, steady-state lifetime, absorption and 
emission cross-sections, attenuation coefficient, core radius, and refractive index, are the 
main factors which affect fibre lasers and amplifiers [1]. Some other parameters (gain, 
saturated gain, noise figure, optimum fibre length, etc.) depend on the above-said factors 
[2]. Moreover, there are some additional factors, e.g., availability of co-dopants and their 
concentrations, conditions of alignment of the dopants in the crystalline form of host 
materials, which influence those main parameters, too [2]. The parameters describing any 
manufactured DOF are often unique [3].  

For characterisation of DOFs using double [4] and triple cut-back methods [5, 6], or 
a similar technique suggested in [7], single-beams are usually utilised in the experiments. 
In another experimental technique [8], a single-beam as a test pulse has also been used for 
simultaneous measurements of nonlinearity and group-velocity dispersion. Thus, for a 
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proper choice of length of a DOF under test we should know the penetration depth of 
single-beam propagation along the DOF, in order to detect the output. 

In this paper, we will introduce an influence length (IL) as a penetration depth of 
single-beam and a length of DOF for which the power at its output end drops down as 
small as 1/e2 of the input power. This parameter depends on the main DOF parameters. 
We will compare the IL of glass and polymer DOFs showing a background loss and 
lacking it. Then an important conclusion follows that the optimum lengths of DOFs are 
best to be shorter than the IL. 

2. IL for single-beam propagation in DOFs 

Using of the rate equation is the simplest way to verify parameters of fibre amplifiers and 
lasers [2]. Our model is based on a three-level system, with a fast decay of third level 
operated only by a single beam, with any wavelength equal to operating wavelength of a 
lossy DOF under test. In high-loss DOFs, like dye-doped polymer optical fibres or doped 
glass ones, the background loss term is inserted into the rate equations basing on 
phenomenological approach [9–11]. Therefore, under single-beam operation of the DOF, 
the rate equations for the input intensity and densities are as follows [9–11]: 
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where I  is the input intensity, 1N , 2N  and  Nt respectively the ground, metastable and 

the total charge densities, aσ  and eσ  respectively the absorption and emission cross-

sections, τ  the steady-state lifetime of a dopant on its metastable level, h  the Planck 

constant, α  the loss coefficient of the DOF and, finally, ν  the input-power frequency. 

The effect of amplified spontaneous emission may be disregarded when the input power 
of the DOF under test is low and/or its length is short enough [12–15]. Using Eqs. (2) and 
(3), we obtain 
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In the given DOF, the input intensity is assumed as a slow-varying function of time, 

so that Eq. (4) represents a linear first-order differential equation with 2N  being time-

variant. The solution reads as follows: 
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where the C′  constant can be determined from the boundary condition 20 0t N→ ⇒ → . 

To achieve a steady-state condition, the exponential term in Eq. (5) should equal  
to –1. Therefore, we introduce the steady-state time T as follows: 
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Here the steady-state time is of the order of metastable lifetime τ  for DOFs, i.e., of 

the order of millisecond for the case of Er-doped fibre amplifiers and nanosecond for 

organic-doped polimer optical fibres [10]. Due to high input powers, the T  value in the 
input region of erbium-doped fibre amplifiers rapidly reaches the steady state. When the 
pump and signal simultaneously enter the Er-doped fibre amplifier, Eq. (6) should be 
changed to [4] 
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Eq. (7) testifies that, under simultaneous presence of the pump and signal fields in 
the DOF, the amplifier achieves its steady state quicker than in the case of only one of the 
fields present. The pump power decreases along the DOF length, while the signal power 
then increases and reaches its maximum at the output end [2, 16]. This makes the T  
value to be nearly constant. 

Basing on Eq. (5) for the steady-state of dopant atoms, one can assume that the 

electron density of the second level is constant. The density 2N  of the second level varies 

as 
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Supposing the steady-state condition and substituting 2N  from Eq. (8) and N1 from 

Eq. (3) into Eq. (1), we obtain an equation describing the input intensity variation versus 
the length of a lossy medium: 
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By integrating Eq. (9) we obtain 
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where lossyC  means the constant of integration obtained with the boundary condition 

( 0 0I I z= ⇒ = ). It is seen that lossyC  depends upon the 0I  parameter and the type of 

DOF. 
The model involving Eq. (10) is similar to that used for determination of the 

background loss in Er-doped fibre amplifiers [5]. This integral can simply be solved using 
a common table of integrals [17], provided that the absorption and emission cross-
sections are known and the loss is determined on this basis. However, these parameters 
are unknown within the model suggested by us and so we have to find a set of four 
functions in order to determine the given parameters. Because of the presence of 
arctangent function in the set of functions derived above, the analytical solution of our 
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model would be rather complex. Desiring to solve the model analytically, we convert the 
solution integral into a logarithmic form, by using the following definitions:  
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Then the l. h. s. of Eq. (10) changes to 
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with A  and B  being defined as 
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Сhanging the above variables and solving the integral Eq. (11), we arrive at the 
solution sought after: 
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Eq. (13) gives a variation of the input signal intensity with respect to the length in 
the lossy DOF. If the background loss in the DOF is negligible, the solution of the 
coupled rate equations (i.e., Eqs. (1), (2) and (3)) reads as [4, 16] 
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Again, the integration constants are determined from the boundary condition 

( 0 0I I z= ⇒ = ). As a result, from Eq. (13) we get for the lossy medium 
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where 0 0/ ( )aeU h I= ν τ + σ + σ  depends on the input power in that medium. For the 

lossless medium Eq. (14) yields in 
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Hence, using Eqs. (13) and (15) or, alternatively, Eqs. (14) and (16) enables one to find 
the equations governing the power variations along the DOF length for the lossy and 
lossless conditions, respectively. When the intensity in the DOF becomes 1/e2 of the 
primary input intensity, the IL for the single-beam propagation in DOFs may be 
determined as 
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where Eq. (17) and Eq. (18) refer for the lossy and lossless media, respectively. 

Simulation results 

We have used a bisectional method for solving Eqs. (13) and (14) [15]. Fig. 1a and 
Fig. 1b show variations of the output power with the DOF length in Ge/Al/Er DOF 
(EDOF) for a number of wavelengths and values of the other parameters. Here the core 
diameter 4.3 µm and the steady-state lifetime 10 ms [2] are taken for the EDOF. When 
the background loss in the EDOF remains negligible, the variation of the power with 
respect to the DOF length is semi-linear, irrespective of the wavelength (see Fig. 1a and 
Eq. (14)). If we assume a background loss for the EDOF, the dependence of the power 
variation on the length is semi-exponential (see Fig. 1b and Eq. (13)) and the maximum 
length of beam influence is shorter than in the previous case. 

  

  

Fig. 1. Variations of output power vs. DOF length for the cases of (a) 
lossless erbium-doped fibre, (b) lossy erbium-doped fibre, (c) lossy  
RB-DPOF, and (d) single-mode fibre. 

In Fig. 1c the same dependence is plotted for a polymer optical fibre doped with 
Rhodamine-B (RB-DPOF) and different wavelengths. Here the following parameters are 
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used: α  = 1 dB/m, tN  = 5.4×1019 ion/m3, the core diameter of 500 µm, and τ  = 2.85 ns 

[9, 10]. It is obvious that the length variation of the power for the lossy RB-DPOF is 
semi-linear, too. When comparing the lossy EDOF with the lossless RB-DPOF, one can 
clearly observe a wavelength effect in the lossless medium. At the same time, different 
wavelengths have almost the same effect for the lossy medium or, at least, it is hardly 
distinguishable. The exponential power variation for the single-mode fibre with 
α  = 1 dB/km is displayed in Fig. 1d. Comparing Fig. 1d with Fig. 1b and Fig. 1c, we 

conclude that the lossy DOFs reveal the behaviour close to that characteristic of single-
mode ones. 

Basing on Eqs. (17) and (18), we have plotted the IL for the lossless and lossy glass 
EDOFs at different wavelengths (see Fig. 2a and Fig. 3a, respectively). The 
corresponding 3D diagrams are depicted in Fig. 2b and Fig. 3b. 

 

 

Fig. 2. Dependences of IL on the input power at different wavelengths for the 
lossless EDOF. 

  

Fig. 3. Dependences of IL on the input power at different wavelengths for the 
lossy EDOF. 

As seen from Fig. 2 and Fig. 3, the IL varies linearly with the input power and the 
wavelength when the background loss of the EDOF is absent. The presence of losses in 
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the EDOF makes the trend change slowly with the input power. In other words, the 
background loss induces the power saturation in the EDOF. The ILs at longer 
wavelengths are larger, when compare with shorter ones. 

 

 

Fig. 4. Dependences of IL on the input power at different wavelengths for the RB-DPOF. 

  

 

Fig. 5. Dependences of IL on the 
input power for different co-dopants 
and the cases of (a) lossless EDOF, 
(b) lossy EDOF, (c) RB-DPOF, and 
(d) optical fibre doped with 
dichloromethane (DCM). 

 

Fig. 4a shows the dependences of IL of the RB-DPOF on the wavelength, while the 
relevant 3D diagrams are depicted in Fig. 4b. Here the IL behaves nonlinearly with 
increasing input power. At some wavelengths, the IL has a peak at a certain input power 
and after the peak point the IL value changes slowly. In other terms, the IL reveals little 
variation with increasing input power when there are high losses in the DOF, irrespective 
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of whether we deal with the polymer or glass DOFs. In all the cases, the presence of 
losses imposes the IL to become shorter than that for the lossless DOFs. 

Fig. 5 summarises the effect of co-dopants in the glass and polymer DOFs for the 

lossless and lossy conditions (the densities being tN  =9×1022 ion/m3 and 

tN  = 5.4×1019 ion/m3). It is interesting to note that the ILs under the both conditions 

mentioned above maintain their major features for different co-dopants. In the lossy case, 
the differences among the ILs due to the co-dopants are weak, irrespective of the input 
power (see Fig. 5b). In what concerns the optical fibres doped with Rhodamine-B, 
Rhodamine-6G, Rhodomain-110 and Dichloromathane dyes, the slopes of the IL 
variations decrease and there appears a sharp peak at the input power of about 1.68 kW 
for Rhodomain-110. 

4. Conclusion 

We have derived the relations for single-beam propagation for the both lossy and lossless 
DOFs by solving analytically the rate equations. Using these relations, we have analysed 
the optical power propagation in the DOFs based on silica and polymers. Issuing from 
that analysis, an IL for the single-beam propagation along the glass and polymer DOFs 
may be introduced. Our results show that the IL variations slow down under the lossy 
conditions. The dependence of the IL on the input power is almost linear when the 
background loss in the EDOF is negligible and becomes nonlinear otherwise. The IL 
turns out to be nearly a constant with respect to the input power in the case of EDOFs. 
The IL in the RB-DPOF has a peak at some wavelengths. The effect of co-dopants in the 
lossless conditions is more pronounced when compare with the lossy DOFs. 

Finally, the results of our analysis demonstrate that the IL for the single-beam 
propagation in DOFs is always longer than that for the case of double-beam propagation. 
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Анотація. Умовою охарактеризування легованих оптичних однопроменевих волокон (ЛОВ) 
є забезпечення їх максимальної довжини вздовж якої поширюється сигнал. В даній роботі 
ми розв’язали рівняння для поширення променя у ЛОВ з втратами та без них, ввівши 
ефективну довжину, як максимальну довжину поширення, яка потім визначалась 
аналітично. На основі аналітично отриманих результатів були промодельовані основні 
закономірності ефективної довжини для скляних оптичних волокон, легованих Ge/Al/Er, які 
функціонували на різних довжинах хвиль, за умови наявності і відсутності втрат. Крім 
цього, ефективна довжина була визначена для полімерних і скляних волокон з певним типом 
домішок. Таким чином, продемонстровано, що ефективна довжина може бути корисною 
при однопроменевих вимірюваннях у ЛОВ. 


