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Abstract 

Unique properties of paraxially annihilating beams have been considered. We 
have derived the expressions for this beam type obeying the Maxwell’s equa-
tions. It has been revealed that the beams originate from mismatching of the elec-
tric and magnetic fields and the evanescent waves in the field components. When 
the electric and magnetic fields become totally matched in the paraxial approxi-
mation, the paraxially annihilating beams vanish. 
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1. Introduction 

There is a common opinion in optics that basic distinction between paraxial and nonpar-
axial beams is that the characteristic angle α  of divergence (or convergence) of the par-

axial beams must be very small so that sinα α≈  and 2cos 1 / 2α α≈ − , whereas the non-

paraxial beams are characterised by arbitrarily large real values of that angle. In other 
words, simple decrease in the characteristic angle α  transfers the beam from the nonpar-

axial region into the paraxial one. However, any general analysis of this point for both the 
scalar and vector representations of the light fields, even for a free space or a homogene-
ous medium, demonstrates that this is not the case.  

Indeed, this oversimplified approach is based, as a rule, on representation of light 
beams in the form of plane-wave superpositions. On the other hand, it is well known that 
homogeneous plane waves propagating in some medium cannot, in principle, form a 
complete basis for representation of general solutions to the wave equation [1]. Apparent 
incompleteness of such a wave set can be easily seen on the example concerned with rep-
resentation of spectral integral as a solution to the scalar wave equation. For the mono-
chromatic waves with the frequency ω  we have 

( ) ( )2 2 2 , , 0k n x y z∇ + Ψ = ,     (1) 

where / 2 /k cω π λ= =  stands for the wave number, λ  and c  respectively the free-
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space wavelength and light velocity, and n  the refractive index of a given medium. The 

solution to Eq. (1) may be written for axially symmetric field distribution with the aid of 
the following set of plane waves [2]: 

( ) ( ) ( ) 2 2
0

, , , 0 expim
m mr z e dk U k z J k r iz k kϕϕ π

∞
⊥ ⊥ ⊥ ⊥

 Ψ = = −
  ∫ ,  (2) 

where ( ), 0U k z⊥ =  is the field distribution in the space of wave vectors ( ), ,x y zk k k , 

( )mJ x  the Bessel function of the first kind, 2 2
x yk k k⊥ = + , and the index 0,1,2,...m =  in 

the function mΨ  specifies the topological charge of vortex. 

A set of uniform waves is given by the region 0 k k⊥≤ ≤ . These waves propagate 

through a medium without changing their amplitudes. Their propagation directions lie 
inside the angular region π α π− ≤ ≤ , forming a homogeneous field distribution 

( )hom , ,r zϕΨ . Nonetheless, in order to form the wave field as a whole, it is also necessary 

to take into account the second set of waves with the transverse wave numbers inside the 

angular region k k⊥< < ∞ , which contribute to the field ( ), ,ev r zϕΨ , so that the total 

field is given by the superposition 

( ) ( )hom , , , ,evr z r zϕ ϕΨ = Ψ + Ψ .   (3) 

The properties of such a peculiar field differ radically from those of the uniform 
waves. First of all, their field amplitudes are exponentially reduced to zero along the z 
direction. Second, they oscillate along the direction Reα  with the wavelength of 

( )2 / cosh Imev kλ π α≥    , which is smaller than that for the homogeneous plane waves 

( hom 2 / kλ π≤  [1]). These wave fields have come to be called as evanescent waves [3–5]. 

They cannot be represented in terms of ordinary plane waves, except for some special 
cases [1]. The evanescent waves exist not only in (or near) inhomogeneous media but are 
inherent to side lobes of nonparaxial Gaussian beams propagating in a free space or a 
homogeneous medium [1, 6], i.e. the waves containing phase singularities with alternated 
topological charges. Thus, the evanescent waves contribute essentially to the field struc-
ture and so any simple manipulations with the plane waves cannot permit describing all 
the properties of nonparaxial beams, in contrast to their paraxial analogues.  

The major objection to the above consideration is that the evanescent waves do not 
contribute to the far field [7]. This should mean that description of the near field needs 
taking these waves into account, though we can restrict ourselves to a simple superposi-
tion of plane homogeneous waves when characterising the singular structure of the far 
field of both the paraxial and nonparaxial beams. However, this approach makes a sense 
when applied to the scalar fields only. The nonparaxial light beams are vector-like objects 
characterised additionally by their magnetic fields. In general case, the singular structures 
of the electric and magnetic fields do not coincide, even if the contribution of evanescent 
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waves is very small [8]. The singular lines of these fields can be matched with each other 
only in the paraxial approximation. The topological structure of such complex singulari-
ties needs special approaches, e.g., in the framework of Riemann-Silberstein vortices [9, 
10] or the Poynting vector singularities [11–14] describing common polarisation singu-
larities for both the electric and magnetic fields. Naturally, a spectrum of singular proper-
ties of the nonparaxial beams is sufficiently richer than that for the paraxial beams. When 
the beam waist radius increases (i.e., when the beam tends to become paraxial), some 
unique properties of that beam vanish. This process is very often accompanied by annihi-
lation of the light beam on its own. 

In the present work, we consider one of the examples of nonparaxial vortex-beams 
propagating along the optic axis of optically uniaxial crystal. It annihilates in the process 
of paraxial transferring and that is why we call it as a ‘paraxially annihilating vortex-
beam’. 

2. On the boundary problem for crystals 

As a rule, the evanescent waves are associated with boundary waves arising at a boundary 
face of adjacent media due to total internal reflection of a plane wave [3], although these 
waves can also exist, as mentioned above, in nonparaxial beams propagating in a homo-
geneous medium. Nonparaxial beams in crystals represent the brightest example of the 
case when the evanescent waves manifest themselves, on the one hand, as a constituent of 
nonparaxial beams in a homogeneous optically birefringent medium and, on the other 
hand, as waves matching the beam in an isotropic medium and the eigenmode beam in a 
crystal at its input face. 

It is worth noting that the problem of matching the beam fields in the isotropic and 
anisotropic media is one of the most important points in the modern optics [15]. Its com-
plexity might be judged by the fact that, to the authors’ knowledge, the beam matching 
problem has not yet been solved in the explicit form even for relatively simple case of 
interface of two planar homogeneous isotropic media [16, 17]. The approach for beam 
matching at the interface of a homogeneous medium and a crystal is based on the princi-
ples suggested in the works [16, 17]. It is restricted to consideration of either a paraxial 
approximation [18] or a far radiation field [19]. At the same time, the major difficulties of 
the problem refer to a correct form of transmission and reflecting coefficients rather than 
representation of the field inside the crystal near the interface. Following the approach 
[19], we will suppose that the electromagnetic field is known at the boundary, disregard-
ing the problem of field matching at the interface. To begin with, we will analyse the 
main physical processes responsible for matching of the fields inside a homogeneous me-
dium and an optically uniaxial crystal. 

Let the field in a homogeneous isotropic medium at a crystal interface correspond to 
the nonparaxial beam containing both homogeneous and evanescent waves, while the re-
fractive indices of the crystal be larger than that of the isotropic medium 

( ,medium o en n n< ). The eigenmode beams in the crystal also contain both types of the 
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waves. However, homogeneous waves of the isotropic medium will excite in the crystal 

only a set of homogeneous waves (see Fig. 1). In the isotropic medium with mediumk k⊥ =  

the latter waves propagate along the crystal interface, forming a standing wave. The simi-
lar boundary wave in the crystal is a result of superposition of homogeneous ordinary and 
extraordinary waves propagating in the direction opposite to that of the beam in the iso-

tropic medium, so that we have ( ) ( ), ,o e o e
crystalk k⊥ < . They form a set of homogeneous waves 

in the crystal responsible for matching with the boundary wave in the isotropic medium. 
It should be noticed that the ordinary and extraordinary waves have different angular 

spectra because of their different propagation constants, ok  and ek . 

 

Fig. 1. Illustration of how a nonparaxial beam radiated from a homogeneous 
medium 1 ,o en n n<  induces two counter-propagating beams in an anisot-
ropic medium (optically uniaxial crystal), and a set of evanescent waves. 

 
A portion of homogeneous counter-propagating waves in the crystal with 

( )( ),Im 0o ek⊥ =  has to be matched with a portion of evanescent waves in the isotropic me-

dium. At the same time, all the evanescent waves in the crystal with ( )( ),Im 0o ek⊥ ≠  have 

to be matched with the remaining portion of evanescent waves in the isotropic medium. 
As a consequence, the transmitted and reflected fields at the interface are strongly per-
turbed. The centre of gravity of the reflected field is shifted and the wave as a whole ex-
periences a longitudinal and lateral shifts, too [15]. In our analysis, we will assume that 
the field inside the crystal at the interface has a well-defined and relatively simple form 
containing a regular vortex structure. However, the price for this simplicity is essential 
deformation of the reflected beam, the point remaining beyond our consideration. 
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3. Field structure of the paraxially annihilating vortex-beams 

Our starting point is to construct a simplest nonparaxial vortex-beam in the uniaxial crys-
tal. In the work [20], we have already treated the basic principle of deriving the beam so-
lutions to the Maxwell’s equations in those crystals. Now we make use of the results ob-
tained there and write out the electric and magnetic field components in the circularly 

polarised basis of the ordinary ( ( ) ( ){ }1 1,o oE H ) and extraordinary ( ( ) ( ){ }1 1,e eE H ) waves for 

the vortex-beam with the lowest order of topological charge ( 1l = ∓ ) in the input z = 0 

plane: 

( ) ( )
( )

1
,1

0 1

o o oo

o o o

j k Ri zv
E

w R j ik z+
  =   
  

,     (4a) 

( ) ( )
( )

1
,1

0 1

o o oo

o o o

j k Ri zu
E

w R j ik z−
  = −  
  

,     (4b) 

( )
,1 0o

zE = ,       (4c) 

( ) ( )
( )

2
,1

0 1

o o oo o o

o o o o

j k Ri n z z i zv
H

w R R j ik z+
+   = −   

   
,     (5a) 

( ) ( )
( )

2
,1

0 1

o o oo o o

o o o o

j k Ri n z z i zu
H

w R R j ik z−
+   = −   

   
,   (5b) 

( ) ( ) ( )
( )

2

1 2,1
0 1

1 1
2o o o

o o o oz
o o o o o

iz k r
H j k R j k R

w k R R j ik z

   = − −   
    

, (5c) 

( ) ( )
( )

23
,1

0 2

o
e

e e ee

e e e e

n
z iz

j k Ri z nv
E

w R R j ik z+

 +   
 =   
   
 
 

,    (6a) 

( ) ( )
( )

23
,1

0 2

o
e

e e ee

e e e e

n
z iz

j k Ri z nu
E

w R R j ik z−

 +   
 =   
   
 
 

,    (6b) 

( ) ( ) ( )
( )

2 2

1 2,1 2
23 0

1 1
2e o e e

e e e ez
e e e e e

in z k r
E j k R j k R

k R R j ik zn w

    = −    
    

,   (6c) 

( ) ( )
( )

2
1

,1
3 0 2

e e eo e

e e e

j k Rn i zv
H

n w R j ik z+
  =   
  

,      (7a) 

( ) ( )
( )

2
1

,1
3 0 2

e e eo e

e e e

j k Rn i zu
H

n w R j ik z−
  = −   
  

,    (7b) 

( )
,1 0e

zH = ,        (7c) 
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where the notation u x i y= + , v x i y= − , 2 2 2r x y uv= + = , ( )22
o oR uv z iz= + + , 

2
2

3

o
e e

n
R uv z iz

n

 = + + 
 

 is used, ( )mj x  is the spherical Bessel function of the first order 

[21] , 0,1,2,...m = , 2
, , 0 / 2o e o ez k w= , , ,3 0o e ok n k= , 0k  stands for the wave number for the 

free space and 3,on n  are the refractive indices along the principal crystallographic axes. 

At the same time, the mode beams 
( ) ( ){ } ( ) ( ){ }2 2 1 1, ,o o o o

z= ∂E H E H , ( ) ( ){ } ( ) ( ){ }2 2 1 1, ,e e e e
z= ∂E H E H    (8) 

obey also the Maxwell’s equations. They take the following form: 

( ) ( )
( )

2
,2

0 2

o o oo o

o o o o

j k Ri z z izv
E

w R R j ik z+
+   =    

   
,    (9a) 

( ) ( )
( )

2
,2

0 2

o o oo o

o o o o

j k Ri z z izu
E

w R R j ik z−
+   = −   

   
,   (9b) 

( )
,2 0o

zE = ,     (9c) 

( ) ( ) ( )
( )

2
2

3,2
0 2

1o o oo o o
o o

o o o o o o

j k Rin z z izv
H j k R

w R k R R j ik z+

 +    = −     
       

, (10a) 

( ) ( ) ( )
( )

2
2

3,2
0 2

1o o oo o o
o o

o o o o o o

j k Rin z z izu
H j k R

w R k R R j ik z+

 +    = −     
       

, (10b) 

( ) ( ) ( )
( )

2
2

3,2 2
0 2

1
2o o oo o o

o oz
o o o o oo

j k Rz iz in z r
H j k R

w R k R j ik zR

 +  = − −   
    

, (10c) 

( ) ( )
( )

( )

2

2 3 3
,2 2 2

0

1
o

e
e e e e e

e eee e

n
z iz

j k R n j k Rv
E

w k R NRk R
+

  +  
     = −      

  

,  (11a) 

( ) ( )
( )

( )

2

2 3 3
,2 2 2

0

1
o

e
e e e o o

e eee e

n
z iz

j k R n j k Ru
E

w k R NRk R
−

  +  
     = −      

  

,  (11b) 

( ) ( ) ( )
2 2

3 2
3,2 2 2

03

1
2

o
e

e e eo
e ez

e e e e e

n
z iz

n j k Rn r
E j k R

w k R k R Nn R

  +      = − − 
   
 
 

,  (11c) 
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( )

( )
( )2,2 2

0

1
o

o o e
e e

e e
e e

n
k n z iz

nv
H j k R

w Nk R
+

 + 
   = − 
 

,   (12a) 

( )

( )
( )2,2 2

0

1
o

o o e
e e

e e
e e

n
k n z iz

nu
H j k R

w Nk R
−

 + 
   =  
 

,   (12b) 

( )
,2 0e

zH = ,         (12c) 

where 
( )

( )
( )2 3

2
e e e e

e ee e

j ik z j ik z
N

ik zik z

 
= − 
  

. 

Let us consider superpositions of the ordinary and extraordinary beams in Eqs. (4)–
(7), 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }, ,
1 21 1 1 1 1 1, , ,o e o e o o e ec c= +E H E H E H ,    (13) 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }, ,
3 42 2 2 2 2 2, , ,o e o e o o e ec c= +E H E H E H ,   (14) 

where ( 1,2,3,4)nc n =  are constant coefficients. As shown in [20], the beam fields given 

by Eqs. (4)–(7) turn into typical paraxial Laguerre-Gaussian beams of the lowest order in 

the paraxial limit , , 1o e o ek z >> , so that one has 

, , 13, 1o e o e

o
e

k zo

o e

n
z iz

z iz n

R R
>>

+
+ → ,    (15) 

( ) ( ), , 1
2 , , 2 2 , ,

o e o ek z
p o e o e p o e o ej k R j k R

>>
−→− ,   (16) 

( ) ( ), , 1
2 1 , , 2 1 , ,

o e o ek z
p o e o e p o e o ej k R j k R

>>
+ −→− ,   (17) 

( ) ( ), , 1
1 , , 0 , ,

o e o ek z
o e o e o e o ej k R ij k R

>>→ ,    (18) 

( ) ( ), , 1
2 , , 0 , ,

o e o ek z
o e o e o e o ej k R j k R

>>→− ,   (19) 

, , 1
,

, , , ,

1 1
, 1o e o ek z

o e
o e o e o e o e

z
i

R iz z
σ

σ
>>→ = − ,  (20) 

, ,

2

2
1 0 ,0 , ,

,
0 , , ,

exp
( )

( )
o e o ek z o eo e o e

o e
o e o e o e

r

wj k R
G

j ik z

σ
σ

>>

 
− 

 
 → = .   (21) 

Our requirement is that the left-hand polarised components of the field superposi-
tions (13) and (14) in the first and the second beam types should vanish at the plane z = 0 

in the paraxial approximation ( , , 1o e o ek z >> ): 
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( ) ( ) ( ) , , 1,
1 2,1 ,1 ,1 0o e o ek zo e o eE c E c E

>>
− − −= + → ,   (22) 

( ) ( ) ( ) , , 1,
3 4,2 ,2 ,2 0o e o ek zo e o eE c E c E

>>
− − −= + → .    (23) 

After tedious though simple mathematical transformations performed in Eqs. (13) 

and (14), we find that 1 2 3 4 1c c c c= = = =  and 

( ) ( ){ } ( ) ( ){ }, , 1, , , ,
1 1 2 2, ,o e o ek zo e o e o e o e>>→E H E H ,   (24) 

i.e. the fields of the first and second beam types coincide with each other in the paraxial 

approximation. 
Our second step is to construct the field 

{ } ( ) ( ){ } ( ) ( ){ }, , , ,
1 1 2 2, , ,o e o e o e o e= −E H E H E H .   (25) 

The above nonparaxial field has a well-defined magnitude over the range 
z−∞ < < ∞ , vanishing only in some limiting areas. However, it annihilates, 

{ } , , 1
, 0o e o ek z >>→E H ,    (26) 

over all the range z−∞ < < ∞  in the paraxial limit ( , , 1o e o ek z >> ). It is worthwhile that 

the feature of paraxial annihilation is inherent in all the nonparaxial beams obtained as 

{ } ( ) ( ) ( ){ } ( ) ( ) ( ){ }, , , ,1 2
, , , ,1 1 2 2, ,, , ,

m n p
o e o e o e o e

m n p m n pn m p m n p
N N

u v z

+ +∂  = −
 ∂ ∂ ∂

E H E H E H , (27) 

where ( )1,2
, ,m n pN  are the corresponding normalising coefficients. 

4. Intrinsic features of the paraxially annihilating vortex-beams 
4.1. Electric and magnetic fields 

What do the evanescent waves and the mismatching between the electric and magnetic 
fields contribute to annihilating process of the vortex-beams? To answer the question, let 
us consider the structure of the field components. The approximate boundary conditions 
given by Eqs. (22) and (23) provide minimisation of the left-hand polarised component of 
the nonparaxial beam in the input plane z = 0 (in the paraxial approximation, this compo-
nent vanishes), so that the right-hand polarised component contributes chiefly to the beam 
field at comparatively small crystal lengths z. 

Fig. 2 illustrates the transverse and longitudinal distributions of the amplitudes and 

phases of the right-hand polarised components in the electric ( E+ ) and magnetic ( H+ ) 

fields. A major striking feature is essential distinction in the structures of these fields. 
Both the electric and magnetic fields carry over negatively charged optical vortex centred 
at the beam axis. The vortex is encircled by a set of ring dislocations (or toroidal vortices) 
in the z = 0 plane. However, in contrast to the partial mode beams in the field composi-
tion with dislocations positioned only in the z = 0 plane, the components of the paraxially 
annihilating beam have ring dislocations distributed along the negative and positive z di-
rections. Despite the above resemblance, different positions and numbers of ring disloca-
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tions make the amplitude and phase structures of the electric and magnetic fields abso-
lutely different. As the waist radius of the beam increases, the structures of these fields 
start to match, though their amplitudes tend quickly to zero. Total matching of the electric 
and magnetic fields causes annihilation of the beam. 

 

Fig. 2. Transverse and longitudinal distributions of right-hand polarised 
component in the electric ( E+ ) and magnetic ( H+ ) fields for the case of 

0 0.1µmw = , 2.3on =  and 3 2.2n = . 

One of the constitutive points of our consideration is the impact of evanescent 
waves. The contributions of the evanescent and homogeneous waves to the field compo-
nents may be estimated with Eqs. (2) and (3). The spectral distribution 

( ) ( )homhom, ,E H U k ϕ+ + ⊥ ′=  of the homogeneous wave, 

( ) ( ) ( )hom ,0
, , 0 , (0 )im

m o eU k e dr r z J k r k kϕϕ π
∞′

⊥ ⊥ ⊥′ = Ψ = ≤ <∫ , (28) 

and the distribution ( ) ( ), ,evanevanE H U k ϕ+ + ⊥ ′=  of the evanescent one, 

( ) ( ) ( )hom ,0
, , 0 , ( )im

m o eU k e dr r z J k r k kϕϕ π
∞′

⊥ ⊥ ⊥′ = Ψ = ≤ < ∞∫ ,  (29) 

are defined by Eqs. (4a), (6a), (9a) and (11a) for the electric field component E+Ψ =  and 

by Eqs. (5a), (7a), (10a) and (12a) for the magnetic field component H+Ψ = , along with 

Eq. (25). In the above relations, ϕ′  means the azimuth angle in the k  space. The integra-

tion limits ,o ek  imply that the spectral integrals given by Eqs. (28) and (29) are calculated 

separately for the ordinary and extraordinary mode beams. 
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The curves shown in Fig. 3 describe spectral densities of the electric ( ( )E k+ ⊥ ) and 

magnetic ( ( )H k+ ⊥ ) fields components. Sharp peaks of the spectral curves occur at the 

transverse wave number ( )E
ok k⊥ =  for the electric field and at ( )H

ek k⊥ =  for the magnetic 

field. Any spectral density beyond the limits ( )E
ok k⊥ =  and ( )H

ek k⊥ =  refers to the eva-

nescent waves. Different positions of these limits provide an extra evidence of drastic 
distinction between the spatial structures of the electric and magnetic fields in the beam. 

The profiles of the right-hand polarised components ( )E r+  and ( )H r+  shaped by ho-

mogeneous and evanescent waves are presented in Fig. 4. The contribution of evanescent 
waves to the paraxially annihilating beams seems to be relatively large in the nonparaxial 

case. The height of the spectral peaks in Fig. 3 quickly decreases with increasing , ,o e o ek z  

value. Besides, the evanescent waves do not contribute to the far field. However, in order 
to be sure of that fact, it is necessary to study the behaviour of the Poynting vector. 

 

 

Fig. 3. Spectral distributions of electric 
( ( )E k+ ⊥ ) and ( ( )H k+ ⊥ ) fields: 0z = , 

0 0.1µmw =  and 32.3, 2.2on n= = . 

 

 

Fig. 4. Radial distributions of homogeneous and evanescent waves in the 
right-hand polarised components of nonparaxial electric ( E+ ) and mag-

netic ( H+ ) paraxially annihilating beam fields ( 0z = , 0 0.1w mµ= , 

32.3, 2.2on n= = ) 
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4.2. Poynting vector 

The energy flux of the nonparaxial beam is described by the components of Poynting vec-
tor P  (or the optical currents) [14, 22] that take into account the contributions of both the 
electric and magnetic fields: 

( )
( ) ( ) ( ){ }

*

* * * * * *

Re
2

Re
2 r z z z r r z z r r

c

c
E H E H E H E H E H E Hϕ ϕ ϕ ϕ ϕ

π

π

= ×

= − + − + −

P E H

e e e
,  (30) 

with { }, ,r zϕe e e  being the unit vectors of the cylindrical basis. The curve ( ), 0zP r z =  

displayed in Fig. 5 characterises radial oscillations of the longitudinal energy flux in the 

paraxially annihilating beam. The zero of the zP  component corresponds to polarisation 

singularities embedded in the beam. Due to oscillations, the component acquires both 
positive and negative values on the side lobes of the curve. This means that the optical 
currents form toroidal optical vortices in the z = 0 plane.  

 

Fig. 5. Radial profiles of longitudinal ( zP ), azimuthal ( Pϕ ) and transverse 

( 2 2
t rP P Pϕ= + ) components of the Poynting vector for the case of 2.3on = , 

2.2en =  and 0 0.1µmw = . 

Fig. 6 represents a spatial evolution of the zP  component, while Fig. 7 shows a de-

tailed representation of the energy distribution between the components of the optical cur-
rents. There are two main peculiarities in the behaviour of the optical current. First, the 

portion of negative longitudinal components zP  is sufficiently smaller than that of the 

corresponding positive values. The negative value of the zP  component is also incom-

mensurably smaller than that expected from the contributions of evanescent waves shown 
in Fig. 4. Although the evanescent waves play major part in shaping toroidal vortices in 
the z plane, the contribution to the electric and magnetic fields is partially compensated in 
the optical currents. Second, the optical currents have additional focal planes in both the 
negative and positive areas of the z axis. The density of the optical currents at first in-
creases gradually with increasing z coordinate (or decreasing z coordinate, if 0z < ) and 
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then immediately falls dawn beyond the additional focus. This effect clearly manifests 
itself in evolution of the curves shown in Fig. 6. 
 

 

Fig. 6. Spatial evolution of normalised longitudinal component ( ),zP r z  at 

0 0.1µmw = . 

 

Fig. 7. Maps of optical current distributions in the paraxially annihilating 
beam ( 0 0.1µmw = ). 

In order to trace transformation of the zP  component along the z axis and behaviour 

of the beam in the far field, we have plotted evolution of the ( )max
zP  maximums versus 
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the z coordinate (see Fig. 8). For a comparison, we also illustrate evolution of the ( )max
,1zP  

component of the partial beam { }1 1,E H  included in the beam composition. Since the 

values of the optical current ( )max
,1zP  are significantly larger than ( )max

zP , we have per-

formed a normalization yielding the ratios of ( )max
,1zP  and ( )max

zP  to their initial values at 

z = 0. The curve ( ) ( )max
,1zP z  for the partial beam comes monotonically down and tends to 

zero as 1/ z . The curve ( )max
zP  has a peak in the plane of additional focus and then drops 

down in the same monotonic manner as ( ) ( )max
,1zP z . Thus, the field of the paraxially an-

nihilating beam reveals the same evolution in the far field as that of typical nonparaxial 

beams. The additional focus is located in the vicinity of lateral toroidal optical vortices in 

the field components E+  and H+  (cf. with Fig. 2). 
 

 

Fig. 8. Evolution of ( )max
zP  parameter for 

the paraxially annihilating beam and 
( )max
,1zP  for the partial beam { }1 1,E H  along 

the crystal length. 

 
 

A general pattern of the beam evolution may be described in terms of the optical cur-
rents given by Eq. (30) (see Fig. 9). The optical currents near the beam axis represent a 
uniform pattern with a slight deformation of the current lines. The deformation increases 
as the lines move away from the beam axis. The lines roll up into the loops and ovals in 
the vicinity of phase singularities of the field components, the loops being shaped not 
only in the z = 0 plane (as it occurs for typical nonparaxial beams [20, 23]) but also in the 

adjacent areas. With increasing beam radius 0w , the lateral loops and ovals approach to 

each other and annihilate in the z = 0 plane. At the same time, the Poynting vector singu-
larities [13] positioned in the z = 0 plane, move away from the beam axis. When the beam 

radius increases up to 0 0.5µmw = , the longitudinal energy flux zP  becomes more than 
310  times smaller, when compare with that for the radius 0 0.1µmw = . A further increase 

in the radius up to 0 2µmw =  causes reduction of the flux by the factor of 810 , which is 

similar to annihilation of the beam. 
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Fig. 9. Maps of optical currents in the paraxially annihilating beam for differ-
ent beam waists 0w . 

5. Conclusions 

We have demonstrated that a unique property of the nonparaxial beams propagating along 
the optic axis of uniaxial crystals, the so-called paraxially annihilating beams, is to van-
ish when passing to the paraxial region. We have derived expressions for the fields obey-
ing the Maxwell’s equations and analysed them both in the terms of scalar phase singu-
larities of the electric and magnetic field components and the optical current singularities. 
It is revealed that, besides of centred optical vortex, the components of the electric and 
magnetic fields have also a set of toroidal vortices (ring dislocations) positioned in the 
vicinity of z = 0 plane rather than in the z = 0 plane itself, as is the case with the typical 
nonparaxial beams. We have shown that the optical current lines in the paraxially annihi-
lating beam form the loops and ovals near these phase singularities. When the waist  
radius increases, the lateral optical current singularities draw together and annihilate  
in the z = 0 plane, while the singularities positioned in the z = 0 plane move away from 
the beam axis. The optical current singularities in the z = 0 plane are formed by the  
evanescent waves, while the lateral singularities originate from mismatching of the  
electric and magnetic fields in the nonparaxial beam. Complete matching of the electric 
and magnetic fields in the paraxial approximation results in disappearance of the  
paraxially annihilating beam. 
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Although it is difficult to create experimentally non-truncated nonparaxial beams, we 
believe that further investigations of the nonparaxial beams in different optical media 
may enable experimental observations of novel unusual properties of these wave objects. 
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Анотація. Розглянуто специфічні властивості параксіально анігілюючих пучків. Одержано 
вирази для пучків цього типу, які задовольняють рівнянням  Максвела. Виявлено, що  
походження цих пучків пов’язано з неузгодженням електричного та магнітного полів, 
 а також із швидко затухаючими хвилями в компонентах поля. Повне узгодження  
електричного та магнітного полів в параксіальному наближенні зумовлює зникнення  
параксіально анігілюючих пучків. 
 


