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Abstract 

We consider a matrix model for the tilted oblique propagation of singular beams 
in optically uniaxial crystals. The model predicts a series of fine effects such as 
vortex conversion and beam quadrefringence, being in a good agreement with 
the paraxial theory. Although the model gives overrated magnitudes of the beam 
parameters in the asymptotic case it enables us to calculate the processes 
occurring with high-order vortex beams, where the theory encounters 
computation difficulties. 
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1. Introduction 

Among a variety of vortex transformations in singular beams [1] travelling through 
optically uniaxial crystals [2, 3], a series of effects have drawn an unbiased attention 
because of their unexpected features. These are double-vortex generation in a 
fundamental Gaussian beam propagating in crystals along their optic axis [4, 5] and a 
vortex-beam quadrefringence in a tilted vortex-beam [6, 7]. The latter effect represents 
splitting of initial tilted vortex-beam into four ones: the first two beams are a result of 
ordinary crystal birefringence and the second two ones are moving off the first ones via a 
spin-orbit coupling in the crystal [8]. However, transverse shift of the beams is very small 
(about a wavelength) [7] and so the effect has been perceived experimentally as an 
ordinary birefringence of the vortex-beam. The beam transformations have been 
described in the framework of beam solutions of the paraxial wave equations [9]. The 
theoretical expressions for the beam amplitudes have been presented in a very cumbrous 
mathematic form so that their analytical analysis meets serious difficulties, thus 
provoking the corresponding computer simulations as the only reliable way out. 

On the other hand, in order to simplify the computation process, a series of models 
of the effect has been proposed [4, 10, 11, 12]. The model presented in the works [4, 10] 
has been based on a matrix representation of symmetric bundle of rays in anisotropic 
crystals, including gyrotropic ones. This comprehend correctly the beam propagation 
along the crystal optic axis and the generation of double-charged vortex but could not 
embrace the case of propagation of tilted beams, when the bundle of rays gets 
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asymmetric. The model suggested by the authors [11, 12] involves two similar tilted 
vortex-beams with orthogonal linear polarizations, propagating at different angles to the 
optic axis. This model has allowed describing fine polarisation structure of the vortex-
beam in the intermediate range of inclination angles, beginning from the on-axis 
propagation (excluding the beam propagation along the optic axis) up to the angle of 
beam splitting (a so-called undistinguished border [13]). However, it does not take into 
account a degenerate case of the on-axis beam propagation and the vortex-generation and 
cannot predict the asymptotic transverse shift of the beams. As a result, the model [11, 
12] has proven to be in conflict with the conservation law for the angular momentum flux 
in crystal [7, 14]. 

The new matrix model presented in this paper enables us to describe both the 
degenerate case and the asymptotic beam splitting in the crystal. It gives also adequate 
description of fine polarisation structure of the beam in the intermediate range of the 
inclination angles. 

2. The matrix model 

At first we assume that a symmetric light beam propagates along the optic axis of an 
unbounded homogeneous, optically uniaxial crystal with a permittivity tensor in its 

diagonal form: ( )ˆ , , 3diag diag o oε ε ε ε= , where no oε=  and 3 3n ε=  are the refractive 

indices along the principal crystallographic axes and 3on n> . Some ray of this beam 

propagates obliquely at the angle ϑ  with respect to the crystal optic axis (see Fig. 1) and 

intersects the plane z = const at the point { },r ϕ . Transformation of the complex 

amplitude 
ray

+

−

Ψ 
=  Ψ 

Ψ  of the ray in a circularly polarised basis may be defined as [4, 15] 
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Fig. 1. Sketched representation of the beam propagation through crystal.  

Optic axis of the crystal is parallel to z axis. 
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where 
2

21 1
sin

2 2

r
n k R n k

R
δ ϑ= ∆ = ∆  stands for the phase difference between the 

ordinary and extraordinary rays [16], 3on n n∆ = −  and 2 2 2R r z= + , 2 2 2r x y= + . 

Assuming that the beam consists of rays with the same amplitudes and the wave vectors 

ik  directed along a radius R  of a semisphere, one can generalise Eq. (1) to the case of 

spherical wave with the amplitude 
ik R

sph
e

R

−
=E Ψ . Note that the polarisation distribution 

at the plane z = 0 (see Fig. 1) given by the above relation remains valid only for a narrow 

range of angles ϑ  ( 2sin , cos 1 / 2ϑ ϑ ϑ ϑ≈ ≈ − ). 

Our model representation is as follows. The transfer from the spherical wave to the 

paraxial Gaussian beam is modelled by the substitution jz z i z→ +  (with jz  being a 

real constant and j = o, e) [17] and the substitutions 
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in the numerator of the exponent ik Re−  and j jR R z i z→ → +  in the denominator of 

Eq. (1). To trace a proper order of those substitutions, we rewrite Eq. (1) as 
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where 0Ψ  is the complex amplitude of the initial beam. Then we modify the beam 

functions in the following way: 
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This is a trait of our model. The ordinary ( oΨ ) and extraordinary ( eΨ ) beams 
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propagate along the optic axis with the same wavenumbers ( ok ), though their complex 

amplitudes ( ), ,o or z kΨ  and ( ), ,e er z kΨ  depend on different wavenumbers ( ok  and ek , 

respectively). The modification itself is valid for relatively small crystal lengths and can 

result in unpredictable deviations for the large distances. We cannot define the values ok  

and ek  in framework of the given model and so use their magnitudes taken from the 

paraxial theory of beams [9]: 
2
3

0 0,o o e
o

n
k k n k k

n
= = , with 0k  being the wavenumber for 

the free space. Thus, the complex amplitudes of the beams in our model are written as 
2

2
0

1
xpo

o o

r
e i

wσ σ

 
Ψ = −  

 
,     

2

2
0

1
xpe

o e

r
e

wσ σ

 
Ψ = −  

 
,   (2) 

where ,
,
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2
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o e
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z = , and 0w  means the radius of the beam waist in the 

z = 0 plane. 

The next step in the model is expanding the complex amplitudes ,o eΨ  over all the 

paraxial beams. For example, the complex amplitudes for the Laguerre-Gaussian beams 
are as follows: 
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where ( ) ( )l
mL x  is the Laguerre polynomial. The only difference with a standard form of 

the ( ),m l
oΨ  and ( ),m l

eΨ  beams is the same magnitude of oσ  in the denominator of Eq. (2) 

for the ordinary and extraordinary fundamental Gaussian beams. 
Now the matrix representation of propagation of the on-axis beam through the 

crystal (see Eq. (1)) may be rewritten with the aid of block matrix as 
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where ,+ −e e  are the basis vectors, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,, , , ,m l m l m l
o er z a r z b r zϕ ϕ ϕ+Ψ = Ψ + Ψ , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,, , , ,m l m l m l
o er z c r z d r zϕ ϕ ϕ−Ψ = Ψ + Ψ , and the functions 
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( ) ( ) ( ) ( ), , ,a b c dϕ ϕ ϕ ϕ  are defined by the matrix in Eq. (5). In our model the crystal is 

described by the block matrix that depends only on geometrical parameters (the azimuth 

angle ϕ  in our case). The material parameters of the crystal (the refractive indices on  

and en ) are taken into account in the functions of the beams ( ),m l
oΨ  and ( ),m l

eΨ , i.e. in 

the same way as has been done in the simplified model reported in [11, 12]. However, in 
our case the beam amplitudes depend on the crystal length. 

In order to generalise this model for the tilted beams transmitting at some angle α  

with respect to the optic axis of crystal, we make use of a standard procedure [6, 17]: if 

the beam axis is tilted over the angle oα  to the optic axis in the plane 0z y , the 

coordinate y is substituted by o oy y i zα→ +  in both the ordinary and extraordinary 

amplitudes given by Eqs. (2). Besides, the both amplitudes are multiplied by the factor 

( ) ( )2exp / 2o o o of k zα α= − . In frame of our model, the coordinate y in the rest of the 

functions is substituted according to the following rule: we have ey y zα→ −  for the 

ordinary beam and oy y zα→ −  for the extraordinary one. Thus, Eqs. (3) and (4) are 

transformed to 

( ) ( )
( )

( ) ( )22
,

2
00

l

om l l o
o m ol

oo

x i y z x y z
L

ww

α α
σσ

 + −  + −  ′Ψ = Ψ 
  

,   (6) 

( ) ( )
( )

( ) ( )22
,

2
00

l

em l l e
e m el

ee

x i y z x y z
L

ww

α α
σσ

 + −  + −  ′Ψ = Ψ 
  

,    (7) 

with 
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In the matrix characterising the crystal, we use the substitution 
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representation, the complex amplitude of the beam travelling through the crystal is given 
by 

( ) ( ) ( )

( ) ( ) ( )( )
0,0 0,0 0,0

mod

0,0 0,0 0,0

mod

,

,

o e
el

o e
el

+

+ +

Ψ = Ψ + Ψ

Ψ =℘ Ψ − Ψ
   (10) 

where the incident beam is the right-hand circularly polarised fundamental Gaussian 

beam at the crystal input ( 0z = ). For comparison, the exact solution of the paraxial wave 

equation in terms of this study would take the following form [6]: 
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Here we omit the sign “–” in Eq. (12) as a point irrelevant to our model. Generally 

speaking, the right-hand polarised components ( ),m l
+Ψ  in our model and the theory have 

much the same form, while the left-hand component given by Eq. (12) includes an 
additional term. In this respect, our model has little advantage for the case of lowest-order 
Gaussian beams. On the other hand, high-order fields have a very complex form  
(see [6, 7]), especially in what concerns the Laguerre-Gaussian and Bessel-Gaussian 
fields, even for the simplest case of on-axis propagation [18]. Nonetheless, Eqs. (10) hold 
true for the high-order beams: after substituting ( ) ( )0,0 ,

, ,
m l

o e o eΨ → Ψ  we have 

( ) ( ) ( )
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mod
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m l m l m l
o e

el
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o e
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   (13) 

for different types of paraxial beams. In the latter case, the model suggested here seems to 
be the only simple way for analytical estimations.  
 

3. Analysis of the model solutions 
3.1 Small beam inclinations 

Let us at first compare the intensity profiles derived in frame of the model and the 
theoretical solutions for the on-axis propagation. The curves typical for the lowest-order 
Gaussian beam are illustrated in Fig.2a. The model and the theory behave much the same, 
unless the amplitude of the model solution is slightly larger than that given by the theory. 
The on-axis Laguerre-Gaussian mode with m = 8, l = 0 (see Fig. 2b) behaves in a similar 
manner. 

As a rule, the most trouble is caused by behaviour of the beam wavefront in the 
model and theoretical solutions under a small perturbation. In our case, such a 
perturbation is little deviation of the beam axis from the optic axis of crystal. In 
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framework of the paraxial theory [4, 5], the left-hand polarised component gains a centred 
doubly charged vortex when the initial on-axis beam is right-hand polarised. Fig. 3 
illustrates destruction of the wavefront state while tilting the beam axis over the angle 

oα : the doubly charged vortex splits into two singly charged ones that slide off the beam 

axis, the model and the theoretical curves coinciding nearly. Little differences in their 
behaviours refer only to sharp variations of the phase.  

3.2 Vortex trajectories 

When the beam propagates along the optic axis, the vortex topological charge of the left-
hand component differs by two units from that of the right-hand component [4, 5]. The 
beam inclination turns on mechanisms of interference coupling between the ordinary 

( oΨ ) and extraordinary ( eΨ ) beams in each circularly polarised component which, in its 

 

Fig. 2. Comparison of solutions of the model and the theory for the −Ψ  

component of Gaussian (m = 0, l = 0 – a) and Laguerre-Gaussian (m = 8, 
l = 0 – b) beams with 1 3 02.3; 2.2; 0.4 , 10n n z m w mµ= = = =  for the case 

of on-axis propagation ( 0oα = ). 

 

Fig. 3. Phase front destruction in the vicinity of phase singularity in frame of 
the model and the theory for the lowest-order beam (m = l = 0) with 

0 15 , 0.02w m z mµ= = . 
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turn, entails destruction of the high-order optical vortices in the beam components. The 
individual vortices inside the beam get jumbled. It is difficult to speak what of the beams 
the optical vortex belongs to. Detailed information about the vortex behaviour in the 

singular jumble is provided by vortex trajectories plotted in the coordinates ‘ ( ),x y  

versus oα ′ : ( ) ( ){ } ( ) ( ){ }, ,Re , , , 0, Im , , , 0m l m l
o ox y z x y zα α± ±Ψ = Ψ = . Fig. 4 illustrates the 

vortex trajectories for the simplest case of singly charged initial vortex-beam with the 
right-hand circular polarisation. The trajectories shown in Fig. 4 are traced by the vortices 
in the left-hand polarised component of the beam inside the crystal. They are computed 
for both the theoretical and model solutions. The qualitative portrait of the trajectories in 
those cases is much the same [6, 7]. There are three traits in the trajectory behaviour: 

The vortex conversion. The initial vortex leaves the beam (see the branch 1 in 
Fig. 4). Instead, a dipole pair is born near the beam axis, one vortex of which (with the 
topological charge equal to that of the initial beam) forms the major trunk of the beam 
core, whereas the second vortex is drawn to the former vortex of the beam sliding off the 
beam too. Such a vortex conversion results in radical reconstruction of topological 
structure of the beam. At the same time, the right-hand component lacks this vortex 
conversion. 

 

Fig. 4. Vortex trajectories in the model (a, b) and the theory (c. d). 
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(1) Shaping of the major trunk. The new-born vortex transmits, together with the tilted 
beam, near its axis. Two pairs of the vortex dipoles are born again in the vicinity of 
the axis. One pair of the vortices in the dipole (curve 3) forms new transverse branch 
of the trajectory (see Fig. 4a, c). The other vortex pair (curve 2) starts to interact with 
the vortex on the major trunk. As a result, two oppositely charged vortices annihilate, 
whereas the residual vortex keeps on shaping the major trunk. Note that the vortices 
on the major trunk and the transverse trajectories do not interact with each other and 
form two sets of independent trajectories. This shaping process is periodically 

reproduced as far as to an indistinguishability border borderα α=  [13]. 

(2) The beam splitting. The indistinguishability border is a border for the beam and the 
crystal parameters to riddle off the nonconforming beams. Not all of the beams can 
overcome the border but only those corresponding to a characteristic equation [13]. 
The nonconforming beams keep on propagating without splitting along any crystal 
length. To shape a splintered beam, one branch of the transverse trajectory is bent 
(curve 4), twisting around the axis of the second beam crowning the birefringent 
process. Then the vortices in the splintered beams transmit along screw-like 
trajectories without dislocation reactions (Fig. 4a, c). This beam splitting is inherent 
in both the right- and left-hand beam components. 
The fine structure of the vortex trajectories is different for the theoretical and model 

solutions. The projections of the vortex trajectories given by the theory and the model are 
shown in Fig.4b,d. The transverse and major trajectories approach very close to each 
other, forming a regular circuit. Only a detailed plotting would allow one to tell them 
apart. The trajectories of the theory are of strongly selected branches. This, at the first 
glance, insignificant effect accumulates along the crystal length and contributes 
essentially to a quadrefringence process in the asymptotic case (to be considered further 
on). 

Simplicity of the presented model enables us to analyse a fine topological structure 
of the beam travelling through the crystal. The latter is inaccessible for the theoretical 
solutions because of boundedness of the computation base for the mathematical structures 
containing numerous singularities. The left-hand component of the birefringent beam just 

 

x 

y 

0.5 mm 

l=1 l=5 l=10 

l=15 l=25 l=35  

Fig. 5. Splitting of high-order vortex beams with the topological charges l and the 
parameters 0 15w mµ= , 2z cm= , 32.3, 2.2on n= =  and 8o

oα = . 
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represents such an object. Nevertheless, the problem can be easily mastered using the 
model solution. Indeed, Fig. 5 illustrates the splitting process for the left-hand component 
of the high-order vortex beams. If the singly charged beam (l=1) with the waist radius 

0 15w mµ=  is split at the angle 8o
oα =  and the crystal length amounts to 2z cm= , the 

beams with 5l =  are slightly overlapped. The overlapping is aggravated for the beam 
with 8l = , whereas the beams with 25l =  and 35l =  remain practically 
indistinguishable. The rings of the beams are overlapped, shaping inside an asymmetric 
net of optical vortices (see the phase portrait displayed in Fig. 6). The singular net 
includes not only the dipole pairs but also non-compensated optical vortices. When the 
beam is tilted, some of the vortices leave the beam axis, forming in the asymptotic case 
two nearly linearly polarised singular birefringent beams with the identical vortices at the 
axes. 

3.3.The beam quadrefringence 

The conversion of the initial vortex in the left-hand component distorts phase distribution 
of the scalar field. Though the initial vortices leave the beam, they remain an ineffaceable 
trace on the phase portrait of the beam component, which is not obliterated even in the 

asymptotic case of relatively large angles oα  and unboundedly large crystal lengths z . 

This effect can be easily traced in the following way.  
The spatial position of the beam is defined by its centre of gravity 

( ) ( ), , ,C o C ox z y zα α  by means of standard expressions [7, 19]: 

( )

( )

2

2

1
, , , ,

1
, , , ,

C o

C o

x dx d y x x y z

y dx d y y x y z

α

α

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

=
ℑ

=
ℑ

∫ ∫

∫ ∫

E

E

   (14) 

where ℑ  denotes the total beam intensity. Let us consider the asymptotic case when the 
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2π 

Φ 

-0.5 0 

2.6 
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y, 
mm 

x, mm  

Fig. 6. Phase distribution inside the rings of the l = 25 vortex-beam 
composition (see Fig. 5). 
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beams are split. Their mutual interference is negligibly small and we can concentrate 
ourselves only on one individual beam (say, the ordinary one). This beam is centred in the 

shifted coordinates ( ), ox y y zα′ = − . The factor +℘  charged with the inherent 

topological structure in the left-hand component composes Eq. (14) via Eq. (13) as 2
+℘ . 

Expanding the function 2
+℘  into a power series on the parameters of infinitesimality 

, , 1,o

o o

zx y
z

z z zα α
′

<< → ∞  and restricting ourselves only to the linear terms, we arrive at 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2

2 2 2 2 2

/ / / 1
1 4

/ / / 1

o o o o o o o

oo o o o o o

x z y z x z z z y z x z

zx z y z x z z z y z

α α α α
αα α α α

′ ′− + + − + +
= ≈ −

′ ′+ + + + + +
.   (15) 

The specific intensity ,oI −  for the ordinary high-order vortex beam given by Eq. (6) 

may be rewritten in the polar coordinates ( ), ,r zϕ  in the form  

( )
( )

( )
22 2

, , 2 2
0

2 2 2

cos
1 4 , ,

.

l
l o

o o ol
o o

r z r
I r z

z w

r x y

ϕ
α σ

− −
 

′= Ψ = − Ψ  
 

′= +

  (16) 

Then, after simple transformations, we find from Eq. (14) the asymptotic coordinates 
of the centre of gravity: 

( ) ( ) ( ) ( )

( ) ( )

, ,

,

2
1 ,

0,

o o
T C

o o

o
C

x x z l
k

y z

α
− −

−

∆ = → ∞ = − +

→ ∞ =

   (17) 

where we have made use of the approximations 
2 2

2 2
1 , 1

o o o

z z z

z z z
≈ + >> . Similar 

computation for the right-hand component shows that ( ) ( )0, 0C Cx z y z+ +→ ∞ = → ∞ = . 

Besides, since o o e ek kα α= , the conditions (17) are also true for the left-hand polarised 

extraordinary beam ( ( ) ( ) ( ) ( ), ,o e
T Tx z x z
− −∆ → ∞ = ∆ → ∞  and 

( ) ( ) ( ) ( ), ,o e
C Cy z y z
− −→ ∞ = → ∞ ). If we change the initial circular polarisation into its 

opposite, then the transverse shift Tx∆  reverses its sign, too. The computer simulations of 

this model process agree well with the above asymptotic result. 
Hence, the beams after birefringent crystal are subjected to a transverse shift, the 

latter being different for the right- and left-hand beam components. In fact, the beam 
experiences a second splitting. A sketch of this process is shown in Fig. 7. We have 
earlier called the above phenomenon as a beam quadrefringence [6, 7]. Now we have 
described it in terms of the matrix model. However, there is some discrepancy between 
the two approaches to be discussed below. 
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Eq. (17) shows that, apart from the handedness of the initial circular polarisation, the 

transverse shift ( ),o
Tx −∆  depends also on the vortex topological charge l . At the first sight, 

it seems that the vortex carries over both the spin ( zs ) and orbital ( zl ) angular momentum 

fluxes [20] contributing to the transverse shift ( ),o
Tx −∆ , the orbital angular momentum 

being proportional to the topological charge l  of the vortex. Consequently, the transverse 

shift should be defined as 

( ) ( ), 2e o
T

o o

x l s
k α

∆ = − + ,  

where 1s = ±  is the handedness (or, simply, the spin) of the initial beam. 

Let us inspect this assumption on the basis of conservation law for the angular 
momentum flux [14]. For the centre of gravity of the beam, the conservation law may be 
written as follows [7, 19]: 

( ) ( ) z
c c z

k
l l const

k+ − + + − −× + ℑ − ℑ + ℑ + ℑ =r k ,  (18) 

where cr  is the radius vector of the centre of gravity, ck  and zk  stand respectively for 

the wave vector and its z-component associated with the centre of gravity, +l  and −l  the 

vortex topological charges respectively for the right- and left-hand components, and ±ℑ  

the normalised intensities of the beam components. Since the inclination angle is small, 

we can assume that / 1zk k ≈ . In the z = 0 plane, the terms in Eq. (18) referred to our 

vortex-beam may be defined as ( )0 1z+ℑ = = , ( )0 0z−ℑ = =  and ( )
0

0c c z z=
× =r k . The 

vortex conversion (see Sec. III) results in identity of the topological vortex charges in the 

y -α z�  

T∆ x  

x  

E−  E+  

0  

 

Fig. 7. Sketched representation of vortex beam quadrefringence. The 
transverse shift Tx∆  is essentially exaggerated ( )Tx λ∆ ∝  and 

( ) / 2o eα α α= +� . 
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asymptotic case ,l l z+ −= → ∞ . Besides, the beam is depolarised 

( ( ) ( )z z+ −ℑ → ∞ = ℑ → ∞ ), so that, ultimately, we have to rewrite Eq. (18) for the 

general case of the initial beam with the handedness s: ( )c c z
l s l+ = + ×r k . At the point 

of origin of the coordinate system given in Fig. 1 the vector product is equal to 

( )c c o o Tz z
k xα

→∞
× = − ∆r k , from whence we find 

T
o o

s
x

k α
∆ = − .      (19) 

Since the transverse shift of the right-hand component is zero ( ( ) 0Tx +∆ = ), the lateral 

displacement of the left-hand component ( )
Tx −∆  amounts to doubled Tx∆ : ( ) 2 TTx x

−∆ = ∆ . 

Eq. (19) indicates that the lateral shift is proportional to the wavelength λ  and inversely 

proportional to the inclination angle oα  of the centre of gravity. 

Thus, the transverse shift of the beams represents a consequence of the conservation 
law for the angular momentum flux. The transverse shift depends only on the handedness 
of circular polarisation of the initial beam, whereas the model solution gives somewhat 
overrated magnitude for high-order beams with 0l ≠ . Such mismatch of the asymptotics 
is apparently caused by the fact that the model employs the beams in the left-hand 
component having the Gaussian envelope, while the beams obtained theoretically have 
more complex envelope functions. 

4. Conclusions 

We have considered a matrix model for the propagation of tilted vortex beam in an 
optically uniaxial crystal and have compared the results thus obtained with the solutions 
of the paraxial wave equation. The model deals with the propagation of two circularly 
polarised beams. One beam, whose circular polarisation is identical to that of the initial 
beam, consists of two co-phased vortex beams with the Gaussian envelope, propagating 
at some angle to each other. The second, orthogonally polarised beam includes two anti-
phased beams, with an additional phase factor.  

Contrary to the models suggested earlier, our matrix model predicts the vortex 
conversion, the traits of the vortex trajectories and the beam quadrefringence. It is in a 
good agreement with the paraxial theory. Besides, the matrix model has enabled us to 
calculate the complex vortex behaviour of high-order singular beams in a much simpler 
way when compare with the paraxial theory. However, the model imposes overrated 
magnitudes for the high-order beam parameters in the asymptotic case. This circumstance 
has to be taken into account when estimating vortex transformations in complex singular 
processes. 
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quadrefringence in a uniaxial crystal. Ukr.J.Phys.Opt. 10: 109-123. 
Анотація. В роботі розглянута матрична модель для сингулярних променів, які 

поширюються під певним кутом до оптичної осі в оптично одновісних кристалах. При 

узгодженні з параксіальною теорією, модель передбачає серію тонких ефектів таких, як 

конверсія вихорів та чотиризаломлення променів. Крім цього на основі даної моделі 

отримуються параметри променя в асимптотичному випадку. Це дає можливість 

розрахувати процеси, які виникають у променях, що містять вихори вищих порядків і для 

яких існуюча теорія зіштовхується з розрахунковими труднощами.  

 
 

 

 

 

 

 


