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Abstract

We consider a matrix model for the tilted oblique propagation of singular beams
in optically uniaxial crystals. The model predicts a series of fine effects such as
vortex conversion and beam quadrefringence, being in a good agreement with
the paraxial theory. Although the model gives overrated magnitudes of the beam
parameters in the asymptotic case it enables us to calculate the processes
occurring with high-order vortex beams, where the theory encounters
computation difficulties.
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1. Introduction

Among a variety of vortex transformations in singular beams [1] travelling through
optically uniaxial crystals [2, 3], a series of effects have drawn an unbiased attention
because of their unexpected features. These are double-vortex generation in a
fundamental Gaussian beam propagating in crystals along their optic axis [4, 5] and a
vortex-beam quadrefringence in a tilted vortex-beam [6, 7]. The latter effect represents
splitting of initial tilted vortex-beam into four ones. the first two beams are a result of
ordinary crystal birefringence and the second two ones are moving off the first onesviaa
spin-orbit coupling in the crystal [8]. However, transverse shift of the beamsis very small
(about a wavelength) [7] and so the effect has been perceived experimentaly as an
ordinary hirefringence of the vortex-beam. The beam transformations have been
described in the framework of beam solutions of the paraxial wave eguations [9]. The
theoretical expressions for the beam amplitudes have been presented in a very cumbrous
mathematic form so that their analytical analysis meets serious difficulties, thus
provoking the corresponding computer simulations as the only reliable way out.

On the other hand, in order to simplify the computation process, a series of models
of the effect has been proposed [4, 10, 11, 12]. The model presented in the works [4, 10]
has been based on a matrix representation of symmetric bundle of rays in anisotropic
crystals, including gyrotropic ones. This comprehend correctly the beam propagation
along the crystal optic axis and the generation of double-charged vortex but could not
embrace the case of propagation of tilted beams, when the bundle of rays gets
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asymmetric. The model suggested by the authors [11, 12] involves two similar tilted
vortex-beams with orthogonal linear polarizations, propagating at different angles to the
optic axis. This model has alowed describing fine polarisation structure of the vortex-
beam in the intermediate range of inclination angles, beginning from the on-axis
propagation (excluding the beam propagation along the optic axis) up to the angle of
beam splitting (a so-called undistinguished border [13]). However, it does not take into
account a degenerate case of the on-axis beam propagation and the vortex-generation and
cannot predict the asymptotic transverse shift of the beams. As a result, the model [11,
12] has proven to be in conflict with the conservation law for the angular momentum flux
incrystal [7, 14].

The new matrix model presented in this paper enables us to describe both the
degenerate case and the asymptotic beam splitting in the crystal. It gives also adequate
description of fine polarisation structure of the beam in the intermediate range of the
inclination angles.

2. Thematrix model

At first we assume that a symmetric light beam propagates along the optic axis of an
unbounded homogeneous, optically uniaxial crystal with a permittivity tensor in its

diagonal form: diag 2 = diag(£o,£0.£3) , Where ng = o and n, = \/g are the refractive
indices along the principal crystallographic axes and n, >n,. Some ray of this beam

propagates obliquely at the angle 7 with respect to the crystal optic axis (see Fig. 1) and
intersects the plane z= const at the point {r,¢}. Transformation of the complex

amplitude Y. = [3} of theray in acircularly polarised basis may be defined as[4, 15]
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Fig. 1. Sketched representation of the beam propagation through crystal.
Optic axis of the crystal is parallel to z axis.
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2
where J= %An kRsin® & :%An k% stands for the phase difference between the

ordinary and extraordinary rays [16], An=n,-ny and R®=r2+7% r2=x?+y2,
Assuming that the beam consists of rays with the same amplitudes and the wave vectors
k. directed along aradius R of a semisphere, one can generalise Eq. (1) to the case of

-ikR
e
b 4

spherical wave with the amplitude E . Note that the polarisation distribution

sph —
at the plane z = 0 (see Fig. 1) given by the above relation remains valid only for a narrow
range of angles & (sing =4, cosd =1-97/2).

Our model representation is as follows. The transfer from the spherical wave to the
paraxial Gaussian beam is modelled by the substitution z — z+i z; (with z; being a

real constant and j = o, €) [17] and the substitutions

2 2
. \2 . r : r
R-R = (z+|zj) +r? :(z +|z].) 1+—2:(z +|z].) t———
(z+izj) 2(z+|zj)
in the numerator of the exponent e*Rand R - RJ. - Z+i Z; in the denominator of

Eq. (1). To trace a proper order of those substitutions, we rewrite Eq. (1) as

11( 1 e .1 1 %) _ .1
Wray - ¥(z)== i2 €| |+ i e’ W =

3 1 l'I'Joeid + l'I')oe_ié e_i2¢( LlJOeiJ - l'|Joe_i 5) (1) 1{ l-IJO + l-lJe ]

2 ei2¢(q_,0ei5 —LPOe_iJ) 1 o] 2 ei2¢(l_p0 -,)

where W, is the complex amplitude of the initial beam. Then we modify the beam

functionsin the following way:

—ikz 2
W, =% expl i~ _+is
z+iz, 2(z+iz,)

-ikz 2 -ik,z 2
=€ —exp _i(k+k0A.n)r - zoe. exp —i—kor_ ,
z+iz, 2(z+iz,) z+iz, 2(z +iz,)

' :iex —|k—r2—|5
¢ z+iz P 2(z+iz,)

_eglk exp[—i (k—koAn)rzj B zoe_”%Z exp[—i 2(kerz ]

z+iz, 2(z+iz,) z+iz, Z +iz,)

This is a trait of our model. The ordinary (W, ) and extraordinary (W,) beams
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propagate along the optic axis with the same wavenumbers (k; ), though their complex
amplitudes W, (r,z,k,) and W (r,zk,) depend on different wavenumbers (k, and k,,

respectively). The modification itself is valid for relatively small crystal lengths and can
result in unpredictable deviations for the large distances. We cannot define the values k|

and k, in framework of the given model and so use their magnitudes taken from the

2
paraxial theory of beams [9]: k, =Kkyng, ke = kon&’ with Kk, being the wavenumber for

0]
the free space. Thus, the complex amplitudes of the beamsin our model are written as

1 r? 1 r2
Y :—exp W exp (2
° [ WZUOJ ¢ { vvzaj
. Z Ko WG ' .
where 0, ¢ =1—|?, Zye = '2 , and W, means the radius of the beam waist in the
, e
z=0plane.

The next step in the model is expanding the complex amplitudes W . over all the

paraxial beams. For example, the complex amplitudes for the Laguerre-Gaussian beams

are asfollows:
|
x+iy) o _r?
L gy 3
O)I m[ 02 g 0 ( )

(
g (w,
i:::i’ (i)

where L(rL) (x) is the Laguerre polynomial. The only difference with a standard form of

the LIJf)m") and LIJS”") beams is the same magnitude of o in the denominator of Eq. (2)

for the ordinary and extraordinary fundamental Gaussian beams.
Now the matrix representation of propagation of the on-axis beam through the
crystal (see Eq. (1)) may be rewritten with the aid of block matrix as
Y=e,W,(r,z) +e_¥_(r,2)

Wl (1 e 0 0 ) ym) (r.2)

O | [d¥ 1 o o0 o | 5)
wie 1o o 1 =2 | ™)y )

(e o o0 -€¥ 1 0

where e,,e_ are the basis vectors, W™ (r,4,2)=a(g) W™ (r,2) +b(g) Y™ (r,2),
W) (r,4,2) =c(g) W™ (r,2) +d(g) Y™ (r,2), and the functions
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a(¢),b(¢),c(p).d(p) are defined by the matrix in Eq. (5). In our model the crystal is

described by the block matrix that depends only on geometrical parameters (the azimuth
angle ¢ in our case). The material parameters of the crystal (the refractive indices n,

and n,) are taken into account in the functions of the beams W{(™) and w(™) e in

the same way as has been done in the ssimplified model reported in [11, 12]. However, in
our case the beam amplitudes depend on the crystal length.

In order to generalise this model for the tilted beams transmitting at some angle o
with respect to the optic axis of crystal, we make use of a standard procedure [6, 17]: if
the beam axis is tilted over the angle a, to the optic axis in the plane zOy, the
coordinate y is substituted by y — y+ia,z, in both the ordinary and extraordinary
amplitudes given by Egs. (2). Besides, the both amplitudes are multiplied by the factor

f(a,) :exp(—kozoaglz). In frame of our model, the coordinate y in the rest of the

functions is substituted according to the following rule: we have y - y-a.z for the
ordinary beam and y - y—a,z for the extraordinary one. Thus, Egs. (3) and (4) are

transformed to
. | r i
w3 =a2)] g ¥ ely-az) |, (6)
(WOJO) L Wgao ]
[x+i(y-a,2)] o ¥ +(y-a.2)]
qJEEm,I) — Ie L(,In) e Lple’ (7)
(Woae) L \Nga-e ]
with
-, _ .
W, = Lexp| -] )
0o Wgao
- (y+ )2: (8)
1 X" +\ytidysz,
Y. =—exp| - flag).
¢ o, p_ woo, (a0)

In the matrix characterising the crysta, we wuse the substitution

i X+ily+ia,
d¥ _ M so that Eq. (5) would result in

x=i(y+ia,z,)
1 0. 0o 0w
o, 1 0 0 0
v= o 1 -n ) | ©)
i
o o -0, 1 0

X—i(y+ia'020) 0= X+i(y+i0'020
2 \F Fo%o) s — 7 “o0%o/

) .
h O= : _ _ d = 6]. In th
where x+i(y+iayz,) x—i(y+iayz,) ad za,=za, [0 In this

Ukr. J. Phys. Opt. 2009, V10, Ne3 113



FadeyevaT.A. et d

representation, the complex amplitude of the beam travelling through the crystal is given
by
w(09)

+

= @l09) 4 yfo0)
model

_ ¢ 0Ly (09)
model _DJ}() © M € )’

where the incident beam is the right-hand circularly polarised fundamental Gaussian
beam at the crystal input (z = 0). For comparison, the exact solution of the paraxial wave
equation in terms of this study would take the following form [6]:

o000 (10)

ngorO) = l00) ; yf09) % (11)
theory ° € Oc
W2 (lp(o,o) _g(09) )J
LI R ik e " Sy (00Ly (09 %] (12)
theory X2+ (x+y +iagz,)? O¢
Here we omit the sign “—" in EQ. (12) as a point irrelevant to our model. Generally

speaking, the right-hand polarised components LIJ(+m") in our model and the theory have

much the same form, while the left-hand component given by Eg. (12) includes an
additional term. In this respect, our model has little advantage for the case of lowest-order
Gaussian beams. On the other hand, high-order fields have a very complex form
(see [6, 7]), especidly in what concerns the Laguerre-Gaussian and Bessel-Gaussian
fields, even for the simplest case of on-axis propagation [18]. Nonetheless, Egs. (10) hold
true for the high-order beams: after substituting w0 _, (™) we have

— l.|J(m'|) + qjm,l)
model ° © ’
:D+\(, (mi). (m,l))’

for different types of paraxial beams. In the latter case, the model suggested here seems to
be the only simple way for analytical estimations.

LIJSm,I)

13
i (13)

model

3. Analysis of the model solutions
3.1 Small beam inclinations

Let us at first compare the intensity profiles derived in frame of the model and the
theoretical solutions for the on-axis propagation. The curves typical for the lowest-order
Gaussian beam are illustrated in Fig.2a. The model and the theory behave much the same,
unless the amplitude of the model solution is slightly larger than that given by the theory.
The on-axis Laguerre-Gaussian mode with m=8, | = 0 (see Fig. 2b) behaves in a similar
manner.

As a rule, the most trouble is caused by behaviour of the beam wavefront in the
model and theoretical solutions under a small perturbation. In our case, such a
perturbation is little deviation of the beam axis from the optic axis of crystal. In
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Fig. 2. Comparison of solutions of the model and the theory for the W_
component of Gaussian (m=0, | =0 — a) and Laguerre-Gaussian (m = 8,
| =0 - b) beams with N, =2.3;n, =2.2; 2 =0.4m,w, =10 m for the case

of on-axis propagation (@, =0).
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Fig. 3. Phase front destruction in the vicinity of phase singularity in frame of

the model and the theory for the lowest-order beam (m =1=0) with

W =154m, z=0.02m.
framework of the paraxial theory [4, 5], the left-hand polarised component gains a centred
doubly charged vortex when the initial on-axis beam is right-hand polarised. Fig. 3
illustrates destruction of the wavefront state while tilting the beam axis over the angle
a, : the doubly charged vortex splitsinto two singly charged ones that slide off the beam
axis, the model and the theoretical curves coinciding nearly. Little differences in their
behaviours refer only to sharp variations of the phase.

3.2 Vortex trajectories

When the beam propagates along the optic axis, the vortex topological charge of the |eft-
hand component differs by two units from that of the right-hand component [4, 5]. The
beam inclination turns on mechanisms of interference coupling between the ordinary

(W,) and extraordinary (W) beams in each circularly polarised component which, in its
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turn, entails destruction of the high-order optical vortices in the beam components. The
individual vortices inside the beam get jumbled. It is difficult to speak what of the beams
the optical vortex belongs to. Detailed information about the vortex behaviour in the

singular jumble is provided by vortex trgectories plotted in the coordinates ‘(x, y)
versus a,: Re{ W™ (x,y, z,ao)] =0, Im{ W™ (x,y, z,ao)} =0. Fig. 4 illustrates the

vortex trajectories for the simplest case of singly charged initial vortex-beam with the
right-hand circular polarisation. The trajectories shown in Fig. 4 are traced by the vortices
in the left-hand polarised component of the beam inside the crystal. They are computed
for both the theoretical and model solutions. The qualitative portrait of the trajectoriesin
those cases is much the same [6, 7]. There are three traits in the trajectory behaviour:

The vortex conversion. The initial vortex leaves the beam (see the branch 1 in
Fig. 4). Instead, a dipole pair is born near the beam axis, one vortex of which (with the
topologica charge equal to that of the initial beam) forms the major trunk of the beam
core, whereas the second vortex is drawn to the former vortex of the beam dliding off the
beam too. Such a vortex conversion results in radical reconstruction of topological
structure of the beam. At the same time, the right-hand component lacks this vortex
conversion.

X, mm

Fig. 4. Vortex trajectories in the model (a, b) and the theory (c. d).
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(1) Shaping of the major trunk. The new-born vortex transmits, together with the tilted
beam, near its axis. Two pairs of the vortex dipoles are born again in the vicinity of
the axis. One pair of the vortices in the dipole (curve 3) forms new transverse branch
of the trajectory (see Fig. 44, ¢). The other vortex pair (curve 2) starts to interact with
the vortex on the major trunk. As a result, two oppositely charged vortices annihilate,
whereas the residual vortex keeps on shaping the major trunk. Note that the vortices
on the major trunk and the transverse trajectories do not interact with each other and
form two sets of independent trgjectories. This shaping process is periodically

reproduced as far as to an indistinguishability border a = a4 [13].

(2) The beam splitting. The indistinguishability border is a border for the beam and the
crystal parameters to riddle off the nonconforming beams. Not al of the beams can
overcome the border but only those corresponding to a characteristic equation [13].
The nonconforming beams keep on propagating without splitting along any crystal
length. To shape a splintered beam, one branch of the transverse trajectory is bent
(curve 4), twisting around the axis of the second beam crowning the birefringent
process. Then the vortices in the splintered beams transmit along screw-like
trajectories without dislocation reactions (Fig. 4a, c). This beam splitting is inherent
in both the right- and left-hand beam components.

The fine structure of the vortex trgjectories is different for the theoretical and model
solutions. The projections of the vortex trajectories given by the theory and the model are
shown in Fig.4b,d. The transverse and major tragjectories approach very close to each
other, forming a regular circuit. Only a detailed plotting would allow one to tell them
apart. The trajectories of the theory are of strongly selected branches. This, at the first
glance, insignificant effect accumulates along the crystal length and contributes
essentially to a quadrefringence process in the asymptotic case (to be considered further
on).

Simplicity of the presented model enables us to analyse a fine topological structure
of the beam travelling through the crystal. The latter is inaccessible for the theoretical
solutions because of boundedness of the computation base for the mathematical structures
containing numerous singularities. The left-hand component of the birefringent beam just

1:]s]s]
AEIE

Fig. 5. Splitting of high-order vortex beams with the topological charges | and the
parameters W, =15xm, z=2cm, n,=2.3,n, =22 and a, =8.
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Fig. 6. Phase distribution inside the rings of the |=25 vortex-beam
composition (see Fig. 5).
represents such an object. Nevertheless, the problem can be easily mastered using the
model solution. Indeed, Fig. 5 illustrates the splitting process for the left-hand component
of the high-order vortex beams. If the singly charged beam (I=1) with the waist radius
Wp =15um is split at the angle a, =8° and the crystal length amountsto z=2cm, the

beams with | =5 are dlightly overlapped. The overlapping is aggravated for the beam
with 1 =8, whereas the beams with =25 and [1=35 reman practicaly
indistinguishable. The rings of the beams are overlapped, shaping inside an asymmetric
net of optical vortices (see the phase portrait displayed in Fig. 6). The singular net
includes not only the dipole pairs but also non-compensated optical vortices. When the
beam is tilted, some of the vortices leave the beam axis, forming in the asymptotic case
two nearly linearly polarised singular birefringent beams with the identical vortices at the
axes.

3.3.The beam quadrefringence

The conversion of theinitial vortex in the left-hand component distorts phase distribution
of the scalar field. Though the initial vortices leave the beam, they remain an ineffaceable
trace on the phase portrait of the beam component, which is not obliterated even in the
asymptotic case of relatively large angles a, and unboundedly large crystal lengths z.
This effect can be easily traced in the following way.

The gpatial position of the beam is defined by its centre of gravity
% (z.a,), y.(za,) by means of standard expressions[7, 19]:

o :% fox [d y x |E(x,y,z,ao)|2,
o (14)
Yo :% Idx Id y y |E(x,y,z,a'0)|2,

where [ denotes the total beam intensity. Let us consider the asymptotic case when the
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beams are split. Their mutual interference is negligibly small and we can concentrate
ourselves only on one individual beam (say, the ordinary one). This beam is centred in the

shifted coordinates (X,y'=y-a,z). The factor O, charged with the inherent
topological structure in the left-hand component composes Eq. (14) viaEq. (13) as |D + |2 .

Expanding the function |D +|2 into a power series on the parameters of infinitesimality

L, L’y ke <<l 7 & and restricting ourselves only to the linear terms, we arrive at
a,2| |a,z|' | z
(x—ac,zo)2 +(y' +aoz)2 _ (x/aoz—zo/z)2 +y la oz +l)2 ~1-4%% (15
(x+ao2, )7 +(Y +ao2)°  (Xlaoz+2412)° +(Y ooz +1)? a,7*

The specific intensity | _ for the ordinary high-order vortex beam given by Eq. (6)
may be rewritten in the polar coordinates (r, ¢, z) inthe form

2 21
| :{1_4rc08¢20](r 2||‘Uo(r,z)|2,

a, 72 WOUO) (16)

(2=x2 +y2,

Then, after smple transformations, we find from Eq. (14) the asymptotic coordinates
of the centre of gravity:

9 =z )=

(I +2),

Koo (17)
& (2 ®)=0

2 7 z

where we have made use of the approximations Z—2=1+—, —>>1. Similar

% %
computation for the right-hand component shows that X& (z - ©)=0, yg(z - «)=0.
Besides, since k,a, = kg, the conditions (17) are also true for the left-hand polarised

extraordinary beam (Ax$_‘°) (z- )= Ax(r_’e) (z - o) and
Yy (z = ) =y£® (2 = ). If we change the initial circular polarisation into its

opposite, then the transverse shift Ax; reversesits sign, too. The computer simulations of

this model process agree well with the above asymptotic result.

Hence, the beams after birefringent crystal are subjected to a transverse shift, the
latter being different for the right- and left-hand beam components. In fact, the beam
experiences a second splitting. A sketch of this process is shown in Fig. 7. We have
earlier caled the above phenomenon as a beam quadrefringence [6, 7]. Now we have
described it in terms of the matrix model. However, there is some discrepancy between
the two approaches to be discussed below.
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<>
A X

Fig. 7. Sketched representation of vortex beam quadrefringence. The
transverse shift Ax;, is essentially exaggerated (Axr 0 /1) and
a=(a,+a)l2.
Eq. (17) shows that, apart from the handedness of the initial circular polarisation, the
transverse shift Ax$"°) depends also on the vortex topological charge | . At the first sight,

it seems that the vortex carries over both the spin (s,) and orbital (I,) angular momentum

fluxes [20] contributing to the transverse shift Ax(r_“’), the orbital angular momentum

being proportional to the topological charge | of the vortex. Consequently, the transverse
shift should be defined as

AX$e,0) - (1 +s),
where s = +1 isthe handedness (or, simply, the spin) of the initial beam.

Let us inspect this assumption on the basis of conservation law for the angular
momentum flux [14]. For the centre of gravity of the beam, the conservation law may be
written asfollows[7, 19]:

(rexke), +(O-0+0 40 J_){l const (18)

Ko@o

where r is the radius vector of the centre of gravity, k. and k, stand respectively for
the wave vector and its z-component associated with the centre of gravity, |, and |_ the
vortex topological charges respectively for the right- and left-hand components, and [,

the normalised intensities of the beam components. Since the inclination angle is small,
we can assume that k,/k=1. In the z= 0 plane, the terms in Eq. (18) referred to our

vortex-beam may be defined as 1, (z 0f 1, O-(Z OF 0 and (rcxkc)z‘zzo =0. The

vortex conversion (see Sec. I11) results in identity of the topological vortex chargesin the
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asymptotic case |, =l_, z - . Besidess the beam is depolarised
(04(z> 0 FO _(2 o )), so that, ultimately, we have to rewrite Eq. (18) for the
general case of the initial beam with the handedness s: | +s=1 +(r; xk.), . At the point

of origin of the coordinate system given in Fig. 1 the vector product is equa to
(rex kc)z‘ = -k, a, M , from whence we find

700
S
My == (19)
Ko o

Since the transverse shift of the right-hand component is zero (Ax@ =0), the latera

displacement of the left-hand component Ax(r_) amounts to doubled AXx; : Axp =20 .

Eg. (19) indicates that the lateral shift is proportional to the wavelength A and inversely
proportional to the inclination angle &, of the centre of gravity.

Thus, the transverse shift of the beams represents a consequence of the conservation
law for the angular momentum flux. The transverse shift depends only on the handedness
of circular polarisation of the initial beam, whereas the model solution gives somewhat
overrated magnitude for high-order beams with | # 0. Such mismatch of the asymptotics
is apparently caused by the fact that the model employs the beams in the left-hand
component having the Gaussian envelope, while the beams obtained theoreticaly have
more complex envelope functions.

4. Conclusions

We have considered a matrix model for the propagation of tilted vortex beam in an
optically uniaxial crystal and have compared the results thus obtained with the solutions
of the paraxial wave equation. The model deals with the propagation of two circularly
polarised beams. One beam, whose circular polarisation is identical to that of the initial
beam, consists of two co-phased vortex beams with the Gaussian envelope, propagating
at some angle to each other. The second, orthogonally polarised beam includes two anti-
phased beams, with an additional phase factor.

Contrary to the models suggested earlier, our matrix model predicts the vortex
conversion, the traits of the vortex trajectories and the beam quadrefringence. It isin a
good agreement with the paraxia theory. Besides, the matrix model has enabled us to
calculate the complex vortex behaviour of high-order singular beams in a much simpler
way when compare with the paraxial theory. However, the model imposes overrated
magnitudes for the high-order beam parameters in the asymptotic case. This circumstance
has to be taken into account when estimating vortex transformations in complex singular
processes.
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Anomauia. B pobomi posensHyma mampuuHa mooenb Ofis  CUHSYAAPHUX NPOMEHI8, K
NOWUPIOIOMbCA IO NeGHUM KYymoM 00 ONMUYHOI OCi 8 ONMUYHO O00HOSICHUX Kpucmanax. Ilpu
V32000iCeHHI 3 NAPAKCIANbHOIO MEOPIEn, MoOenb nepedbayac cepito MOHKUX eheKmie maKux, sK
KOHBEPCis 8UXOpPi6 ma yYomupuzaniomiens npomerie. Kpim yvoeo Ha ochoei O0anoi mooeni
OMPUMYIOMbCL  NAPAMEmMpPU  NPOMEHs. 6 ACUMIMOMUYHOMY 6unaoky. Lle Oae moowcnusicmo
po3paxysamu npoyecu, AKi UHUKAIOMb Y NPOMEHAX, W0 MICAMb UXOPU BULYUX NOPAOKIE i O
AKUX ICHYI0Ya Meopis 3iumo6xXyemuvcs 3 pO3PAXYHKOSUMU MPYOHOUAMU.

Ukr. J. Phys. Opt. 2009, V10, Ne3 123



