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Abstract

Envelope functions for the reflection and transmission spectra of multilayer
structures are determined. Analytical expressions for the phase thicknesses of
two arbitrary layers ensuring zero reflectance for the whole transparent structure
are found with the aid of those envelopes.
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Introduction

Envelopes of reflection and transmission spectra of one-layer systems have been used by
many researches in order to derive optical constants of those systems [1-7]. In particular,
the authors [8, 9] have employed the envelope function for spectral reflection minima for
finding of expressions for the incidence angles that provide zero p- or s-reflectance of
one-layer structures. In spite of a common opinion that finding out the analytical
functions for the spectral envelopes is hardly possible, even for relatively simple case of
two transparent films [10], analytical expressions for the envelopes of both transparent
and absorbing two- and three-layer structures have nevertheless been obtained [11].

In this study we present expressions for the envelopes of reflection and transmission
spectra of multilayer structures. These results are further applied for ascertaining
analytical antireflection conditions for transparent multilayer structures. It has turned out
that the antireflection conditions derived by us generalise the corresponding conditions
for the case of two-layer coatings [12, 13], which have been earlier obtained with the aid
of other techniques.

1. Envelope functions for the reflection and transmission spectra of
absorbing multilayer structures

Let us consider a multilayer system consisting of k isotropic layers with the phase

. c  2rd,n ~ ~ .
thicknesses 51,:%00&@ (v=12,.,k). Here d, and 7, =n,—ik, denote
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respectively the thicknesses and the complex refractive indices of the layers and BV is the
angle of incidence at the boundary of v/(v+1) media.

The medium above the layered system is semi-infinite, with the refractive index
ngy , and there is a semi-infinite substrate with the refractive index n,,; below the system.

The amplitude reflectance and transmittance of the multilayer structure may be written

respectively as [14]

~ ~ = 2i8,
~ _ rO,s + rs,k+1hO,se ) 1
o+ = L~ -2i6, M
— 5005 k+1€
o —id,
~ _ tO,sts,k+le ) 2
L (2)
— s
L= oF k41

where s is an arbitrary number (0 < s <k +1), the complex parameter % iu = ;(j’uelyf’” is

defined as h;, =i, 0, ;—F,7 ; (j=0,1,...k+land u=0,1..,k+1) and the complex

. - i9; . ~ i6; .
amplitude reflectance (r;, =0; e O ) and transmittance (7;, =7; e ") are determined

according to the well-known  Fresnel formulae. Namely, we have
sin(3, — f3 5 2c0s 3 sin 3 tan(f3; — f3

Tiw=""" ('b:] 'lf”) o Ly =" '~B] ~'B” for the s-polarization and 7, =M ,
sin(g; + f,) s1n( B+ ,Bu) tan(S; + B,)

. 2cos[3j sm,[i; . . .
TR ——— for the p-polarization in the case of |u— J|=1, or
s1n(,8j+ u)cos( = u)
uFl -
~ ~ _'é‘v
M Ljj+1 H fyyr€ )
~ j.u,21 ~ v=j#l . .
Fiu=—=——[15]and 1; = = [11] in the case of |u—]|>1.The
M ’ M

complex parameters M ju11 and M ju,21 could be calculated using the following 2x2

matrix multiplication:

7 y = 1 Fivy
M, M) (1 Fijm 9 . JELj2
7 ~ | = ~ —2i0 4 —2i0 1
Mj,u,Zl Mj,u,22 rj,ji] 1 ]i] jize /= J=
1 Fita j+3 1 Bzt u
Xl Diby  —2ib, | L i -2ib
rji2,/i3e e Fus1u€

6 — 9

Hear the upper signs in ”+” and “F” refer to the condition u# > j+1 and the lower

ones to the condition j>u+1.
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On the basis of Egs.(1) and (2) the reflectance Ry, =7y, HF:M and the

_ Ms1 €08 By -

transmittance Tj ;. = — L gt may be represented as
’ ny cosf, O
Rmin + 40—0,SoiY,k+le,SQS C082 2Re 5s + ¢0,s - ¢s,k+l - 70,s
R _ ( - O-S,OO-s,kH s)
0,k+1 = ~
1+ 4O-s,00-s,k+lgs s'n2 2Re 5s - ¢s,0 - ¢s,k+l
(=0, 10 Q) ' 2
5,0Y s, k+1=%s
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(140,00 4 11€2) 2
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T = * =
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where Q= ¢*™ % and
_ 2
ijn,max — O-O,s + O-s,k-HXO,st (4)
’ 1$ O-S,OO-S,kHQS

2 2
min,max _ k41 Cosﬁkﬂ TO,STS,k+lQS
pminmax _ 5)

=
ny cosf5 (120,00, 1 12)

Notice that here the sign “+” refers to R™* and 7™ and “—"to R™" and 7™ .
Using standard computer modelling techniques, we have shown that the functions
R™™MX and MM are the envelope functions of the reflection and transmission
spectra provided that the relation
d,ng >d,n, (v=12,...s—1Ls+1,s+2,...k) (6)
holds true for the optical thickness of the layer with the number s (see Fig. 1).
Regardless of whether the optical thickness of that arbitrary layer satisfies the condition
(6) or not, the envelope function for the minima of the reflection spectrum RSmin given by

Eq. (4) may be successfully used for establishing antireflection conditions for the
transparent multilayer structure.
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T ' Fig. 1. Computed reflectance R
] of four-layer coating and envelopes
R"™™X  given by Eq.(4) at the

normal incidence. The complex
refractive indices and the
thicknesses of layers are chosen as

follows: n,=1, 7, =1.5-0.001i,
i, =2.1-0.002i, 71, =1.8-0.003i,
fi,=23-0.005 and ny=4.0;
d,=0.4pm, d,=035um,
2 e d, =02 um and d, =2.5um.

A, nm

2. Antireflection conditions for the transparent multilayer structure

Basing on Egs. (3) and (4), one can conclude that the condition Rj;,; =0 is satisfied

only if the envelope of the reflection minima R;ni“ (for an arbitrary number s ranging as

0<s<k+1) equals to zero. In its turn, the condition R™" =0 fulfils if
Ops = Oy 11 =0 (7a)

or
Oy = Ptk =0 (7b)
Here we have taken into consideration that y;, =1 [16] and Q=1 for the

transparent structures.
Having expressed the amplitude reflectance given by Eq. (1) for the structure
s,s+1,..,k,k+1,
~ ~ 25,
_ rs,m + rm,k+lhx,me l

r =
s,k+1 ~ o~ 2218,
1- B, s ke+1€ "

(with m representing an arbitrary number from the interval s <m <k +1), we are able to
solve Egs. (7):

tan 5i _ 2O-s,mo-m,k+l Sin(¢s,m - ¢m,k+1 - 7S,m) - Zo-m,so-m,kﬂo-(is Sin(¢m,s + ¢m,k+l) i\/é

m b
(O-s,m + O.O,s -0, O-m,k+10-0,s + O-m,k+1 )(O-s,m - O-O,s + O.m,so-m,kﬂo-(),s + O-m,k+1) -G

m,s

(®)

where

Q = _(O-s,m + OE),& _O-m,so-m,kﬂob,s - O;n,k+1 )(O-Y,m - %,s + O-m,so;n,kﬂob,s - O-m,k+1 )

><(O-s,m _%,s _o-m,so-mkﬂoz),s + O-m,k+1)

><(O-s,m + Ob,s + 0711,so-m,k+lo-0,s + o-m,k+l) + 16Otv,mo-m,so-31,k+l
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Ukr. J. Phys. Opt. 2009, V10, Ne2 85



Kushnir O.P.

¢s,m - ¢m,k+1 - }/s,m
2

¢m,s + ¢m,k+1 J

J + 4O-m,so-m,k+lo-g,s COSZ [ 2

G= 4O-m,k+lo-s,m COSZ (

If the antireflection condition given by Eq. (7) is rewritten in the form
~ ~ 2 _
0,mTo,m — O-m,k+l =0 ’ (9)

oy + s g €%
where the amplitude reflectance (1) is 7y, = 05 som 0.5 for the structure

~ o~ —2id,
1- Ts.0ts,m€ ’

0,1,....m—1,m (the case of s <m), then the solution of Eq. (9) is as follows:

T 2O-O,sax,m Sin(¢s,m _%,s + }/O,s) + 20_0,36m,so_r2n,k+l Sin(%),s + 7/s,m _¢ms _%,s ) 1\/6

tano, = , (10)
_(O},m + O-O,s - o-m,so-m,kHO-O,s + O-m,k+1 )(o-s,m + O-O,s + O-m,so-m,k+lo-0,s - O-m,k+l ) +W

S

+40,, G,Zn k+100.5 COS

)

where W =40, , 0, cos

2 [¢s,m - ¢0,s + 70,s J 2 ( 70,s + ?/s,m - ¢m,s - %,s ]

2
Eq. (8) for the phase thicknesses &, and Eq. (10) for &, or the corresponding relations

for &, and &, provide zero p- or s-reflectance in the case of oblique incidence and the

antireflection condition in the case of normal incidence. Here s and m are the numbers of
two arbitrary layers (s <m). It is also worth mentioning that the antireflection is possible
only for those transparent structures, of which parameters satisfy the condition 0 =0.

3. Numerical example

As an example, let us derive the antireflection conditions at a given wavelength for a
transparent ten-layer structure in case of the normal incidence. Let us this structure in the

air (n, =1) be deposited on germanium substrate (7;,; =n;; =4.0). The two solutions

for the phase thicknesses of the second and eighth layers, whose numbers are taken
arbitrarily, have been found out for arbitrarily chosen refractive indices of all the layers
(n,=137, n,=143, n, =155, n,=1.77, ny=197, n,=2.10, n, =230, n,=2.47,

ny, =2.77 and n,, =2.96) and for arbitrarily chosen phase thicknesses of the eight layers
(6,=1.755rad, 6,=1.640rad, J,=1.582rad, o,=1.524rad, O, =1.466rad,
0, =1.409rad, J, =1.293rad and J,, =1.236 rad ) with the aid of Egs. (8) and (10):

(1) 6, =1.232rad, & =0.871rad;

(2) 6,=0.817rad, & =1.255rad.
The calculation for the reflectance versus normalized frequency A,/ A (with A, being the

wavelength that corresponds to the calculated phase thicknesses) is illustrated in Fig. 2.
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Fig. 2. Computed reflectance R, versus normalized frequency A4,/A for
the ten-layer coating. The refractive indices of the layers and their phase
thicknesses at A, are as follows: n, =1.37, n,=1.43, n,=1.55, n, =177,
ns=197, n,=210, n,=230, n,=247, n,=277 n,=2.96;
0,=1.755rad, 0,=1.640rad, 0, =1.582rad, 0, =1.524rad,
0, =1.466rad , 0, =1.409 rad , 0, =1.293rad, 0,, =1.236rad;

0,=1232rad, &, =0.871rad (solid curve), 6, =0.817rad, &, =1.255rad
(dotted curve).

Conclusions

Utilisation of the functions of minimums envelope R‘min has allowed us to find

successfully the analytical conditions for the zero reflectance of multilayer coatings at a
single light wavelength. These conditions might be reduced to determination of phase
thicknesses of arbitrary two layers with the aid of Egs. (8) and (10), provided that the
refractive indices and the phase thicknesses of all the other layers satisfy the condition
0 20 . It is shown that the antireflection does not occur in case when Q <0 .

The antireflection conditions revealed by us turn out to be more general when
compare with those obtained with the other known methods for achieving zero
reflectance at a single wavelength [17]. Namely, they allow choosing arbitrary refractive
indices and phase thicknesses of all the layers under study, except for two arbitrary ones,
of which the parameters should be thoroughly calculated.

The envelope functions for the reflection and transmission spectra determined in this
work may be also used for many other purposes, including those mentioned above.
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Anomauin. Busuwaueni 006i0Hi ynxyii cnexkmpie 6i00USaHHS 1 NPONYCKAHMS
bacamowaposux cmpykmyp. 3 00nomo2oio yux 006iOHUX 3HAUOEeH] AHANIMUYHI UPA3U
0 azosux moewur 080X O008LILHUX WApIe, 5KI 3abe3neuyiomv HYIb08e 3HAYEHHS
eHepzemuuHo20 Koepiyicnma 6i0dusants 8id 6cici npo3opoi cmpyKkmypu.
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