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Abstract 

It is shown that a sinusoidal signal wave can transform into a cnoidal (periodic) 
wave in an optical fibre if the power signal propagates in the fibre core. In this 
case the signal wave period increases, but the wave profile does not almost 
change. The signal wave gets the form of kink for the high-power signal. The 
wave transformation is determined by nonlinear effects in the fibre core. The lin-
ear modes of the fibre transform into the nonlinear ones under influence of cubic 
or higher nonlinear interactions of electromagnetic and polarization waves. 
These changes are described by the equation with sinusoidal nonlinearity for the 
polarization wave. The approximate and exact analytical solutions of the nonlin-
ear equation are obtained.  

PACS: 42.65.-k, 42.65.Wi 
UDC: 535.3 
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Introduction 

Nowadays optical fibres have become basic media for transmitting information streams. 
The more information you transfer the higher power of input signals you deal with. As a 
result, nonlinear interactions of electromagnetic waves and dielectric medium can take 
place in the core of optical fibre. The critical value of intensity needed for appearance of 

nonlinear polarization waves is 21210 cm/W~I  [1, 2]. In addition, cumulative nonlin-

ear effects appear at long distances in fibres even if the transmitted signals have relatively 
low powers. Since the electromagnetic and polarization waves do not always look like 
linear modes in fibres [3], nonlinear polariton patterns have been examined as nonlinear 
fibre modes [4–8].  

There are several well-known methods for analysis of signal propagation in different 
dielectric waveguides and optical fibres: analytical [1, 2, 4, 6, 8], semi-analytical [2, 5, 8] 
and numerical [2, 7, 8]. In the present work we consider a new aspect of the analytical 
method for analysing linear and nonlinear polariton waves generated in cylindrical dielec-
tric waveguides or optical fibres. 
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We will show that a sinusoidal polariton wave can transform into a cnoidal (peri-
odic) one whenever a high-power signal propagates in the fibre core. Then the period of 
the polariton wave increases, but the wave profile remains almost the same. If the signal 
power becomes very high, the polariton wave gets a form of kink, i.e. we deal with a so-
called shock wave. The changes in the wave profile and the period are revealed at the 
output of the transmission line. All the wave transformation effects are determined by 
nonlinearity in the fibre core. These changes of the wave profile and the period could be 
described by equation with a sinusoidal nonlinearity for the polariton wave. 

1. Axial symmetric TE-modes 

Let us consider the conditions for appearance of nonlinear polarization waves in a quartz 
optical fibre. The polarization waves are generated in the fibre by falling electromagnetic 
waves, the waves of polarization generate the electromagnetic waves in the medium and 
so on. The Maxwell equations describe the processes of the wave generation as follows: 
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with the medium equation PED
���

π4+= , where reNP
�

�

−=  is the polarization vector 

and N the number of atoms per unit volume. The equation for the electromagnetic and 
polarization waves may be obtained from Eqs. (1) and the medium equation: 
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The fused quartz 2SiO  included in the optical fibre is amorphous material. The unit 

cell of quartz includes the inversion centre, so that the potential of its lattice near each 

atom can be approximated by the even periodic function ( )00 2 b/rcosfU π−= , where 

0b  is the average atomic distance. We can write the motion equation for the external elec-

tron of Si or O ions in quartz as 
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where ( )0 0sin 2U f r/bπ−∇ = −
�

 is the average restoring force of the lattice. Let us sup-

pose that the frequency of the periodic force lies far away from the dissipation region of 
quartz. Then we multiply Eq. (3) by (-eN) and divide by the electron mass m. We obtain 
the following equation for the polarization wave: 
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where /mfeNf m 0

��

= , ( )01 2q /b eNπ=
�

�

 and N/mee
22 =ν . Eqs. (2) and (4) describe 

nonlinear modes of an optical fibre [4, 8]. The magnetic field can be obtained from the 

expression ∫×∇−= EdtcB
��

 after solving the set of Eqs. (2) and (4). 

Now we will find solution of the set of Eqs. (2) and (4) for the optical fibre with the 
step refraction index profile. Suppose that axially symmetric TE-modes [3] propagating 

along z axis are excited, with the vectors ( ) ( ) ( ) ( )r zE r,z,t , P r,z,t , B r,z,t , B r,z,tϕ ϕ

� � � �

 in the 

cylindrical frame of reference ( z,,r ϕ ). Taking into account the expression 0=∇ P
�

, we 

obtain the set of equations for both the electromagnetic and polarization waves (hereafter 

we drop the index ϕ  of vectors ϕϕ P,E ): 
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2. Polariton spectra  

Let us represent the electric and polarization fields as ( ) ( ) ( ) ( ), , ,E F r E t z P F r P t z= =� � . 

Inserting these variables into the first of Eqs. (5) and separating the functions ( )F r  and 

( ) ( ), , ,E t z P t z� � , one can obtain 
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where s is a constant. The first of Eqs. (6) defines the dependence on transversal coordi-
nates for the functions E and P in the fibre [3].  

To the first approximation we can consider the harmonic waves 

( ) ( )0 0exp , expE E i P P iφ φ= =� � , where zt βωφ −=  is the phase, constP,E =00  the 

wave amplitudes and the constant s is included in the propagation constant s+→ ββ . 

In this case we can arrive at the dispersion law, if we expand the sine in the second of 

Eqs. (5) as ( )sin qP qP≈ , 1<<qP  (the linear case) and use the second of Eqs. (6): 
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where m/Nee
22 4πω =  is the electronic plasma frequency. The solutions of Eq. (7) are 

two polariton branches (see Fig. 1, solid curves 1 and 2): 
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To the second approximation the polariton branches acquire dependence on the am-

plitude of the polarization wave 0P , if we consider that ( ) ( )3 2
0sin / 6qP qP q P P≈ −  

(nonlinear case – see Fig. 1, dotted curves 1 and 2) 
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3. Nonlinear polariton waves 

Let us rewrite the second of Eqs. (6) in the form  
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We can change the variables φ→z,t  and then obtain from Eqs. (5) and (10) the 

following set of equations: 

 

 

Fig. 1. Branches of polari-
ton spectrum for an optical 
fibre: 1 – +ω , 2 – −ω . 
Solid and doted curves re-
fer respectively to linear 
and nonlinear cases. 
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From the first of Eqs. (11) we get the integral of motion EPI  in the φ -space: 
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c
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−

=
222

24

ωβ
πω

.     (12) 

We can neglect the constant EPI  in Eq. (12) for the relation of the electric field and 

polarization, if we assume that the polarization is excited by the alternating field only. 
Then one can insert Eq. (12) into the second of Eqs. (11) and obtain the equation for po-
larization: 
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where 2ω/ff mS =  and ( )2 2 2 2
0 /ea cω ω β= − . 

The solution of Eq. (13) may be obtained with different methods. One of them is av-
eraging over periodic variable such as the fast oscillating phase. For this purpose we can 
use the Van der Pole method [9]. We present the solution of equation in the form 

( )0
iP P e φφ= , multiply the equation by φie−  and average it over the period π2 : 
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If we expand the sine in Eq. (14) in the Taylor series up to the cubic term 

( ) ( )( )3 3
0 0sin / 6 iqP qP q P e φ ≈ −   and disregard the second derivative of 0P  in the spirit 

of the method mentioned, we obtain 
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tion wave amplitude follows from the expression obtained above:  
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where ( )2 2 2 2
0 0 (0) 0d c P P const = + =   and ( )0 1Sa f qφ φ= + −� . In this approximation, 

the polarization wave looks as 
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We can rewrite this expression in the form 
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and so obtain the electric field from Eqs. (12) and (15): 
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4. Exact solutions for the cnoidal polariton waves 

Another method for solving Eq. (13) is its direct integration with the initial conditions 
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0 0, /P dP d constφ φ ξ= = = = . The first integral of Eq. (13) is 

( )
2

2 2
0

2
cos 1SfdP

qP a P
d q

ξ
φ

  = +  −  −   
 

.   (17) 

If the electric field is small, the polarization of medium will be small, too ( 1<<qP ). 

Then we expand the cosine in Eq. (17) into a Taylor series ( ( )
2 2
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2

q P
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tain the second integral for the linear case: 
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. After converting the function in Eq. (18) we get trigonometric 

functions describing the polarization wave: 
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It is clear that the polarization wave is described as a harmonic function in the linear 
case, i.e. the optical fibre modes are then linear. The solutions of Eqs. (19) may be con-
sidered as a test of the method suggested. 

Let us now consider the next term in the series of cosine 

( ( ) 2 2 4 4cos 1 2 24qP q p q P≈ − + ). Then we obtain the following integral of Eq. (17): 
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defined from the equations 
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We convert the elliptic integral to the Jacobi sine, sn, and obtain the expression for 
the nonlinear polarization wave in the form of cnoidal periodic wave: 

3
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The cnoidal wave transforms to the sinusoidal one (i.e., the linear mode of optical fi-

bres) if only 0
b

a
→ . Then we have the solution 
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with a larger period (see Fig. 2). This means that the period of signal wave depends on its 
power and the wave period increases when the signal intensity in the fibre does. Other-

wise, the signal wave period can change if the initial condition ( )
0

dP
dξ φ=  is varied at 
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the fibre input. For example, if the module of sn approaches unity ( 1
b

a
→ ), then the fol-

lowing wave transformation takes place: 
3 3

, ,1
12 12
S Sf q f qb

sn a tn a
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φ φ
   
   →
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, i.e.  

a shock wave (kink) arises from the cnoidal wave (see Fig. 3). 
 

 

Fig. 2. Polarization 
waves: curves 1 and 2 
correspond respectively 
to sinusoidal and cnoidal 
waves. 

 

 

Fig. 3. Transformation of 
cnoidal wave into a kink 
by varying the module 
k = b/a. 

 

 
Now we find the electric field from Eqs. (12) and (21): 
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One can integrate Eq. (17) without expanding the cosine 
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After converting Eq. (23) one can get the expressions for the cnoidal polariton wave 
described with the Jacobi cosine:  
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A transformation of the cnoidal wave given by Eq. (24) to a soliton takes place 
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 tends to unity.  

Finally, one can find the electric field from Eq. (12) and Eq. (24) for the case of high-
power signals: 
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Conclusions 

Electromagnetic wave in an optical fibre can acquire a form of polariton wave. By inject-
ing a powerful signal into the fibre we get transformation of the harmonic signal wave 
into the cnoidal, kink or soliton ones. The period of high-power polariton wave increases 
and the wave profile changes, depending on the parameters of both the wave and the fi-
bre. 

All the wave transformation effects are determined by nonlinear properties of the fi-
bre core. The nonlinear changes in the wave period and profile are described by the equa-
tions for polariton waves with sinusoidal nonlinearity. These equations allow for finding 
exact solutions.  

The polariton spectrum has the two branches each of which is related to the linear 
and nonlinear cases. The branches referred conventionally to as “plus” are similar for the 
both cases; though the “minus” branches are different (the nonlinear branch is lower than 
the linear one). 

Hence, the analysis of signal propagation developed by us, which is based on the 
equation with sinusoidal nonlinearity for the polariton wave, provides more clear under-



Transformation of sinusoidal 

Ukr. J. Phys. Opt. 2008, V9, №4 235 

standing of signal disturbances in the transmitting lines and optical sensors made from the 
optical fibres. While operating with several input signals, one should take into account a 
possibility of reading data errors because the overall power of all the signals can influ-
ence their periods. In order to avoid these errors while receiving the data, one should ana-
lyze the period of signal as a function of its power. 
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