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Abstract 

Potentiality of experimental analysis for the averaged Poynting vector 
components is considered. It is shown that joint application of traditional 
interferometry and Stocks polarimetry should allow for determining 
unambiguously characteristics of the Poynting vector components at each point 
of field. 
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One of theoretical aspects in rapidly developing area of the modern optical technology, 
elaboration of new kinds of optical tweezers [1], is connected with the fact that the vortex 
beams and polarized waves (both homogeneous and heterogeneous) possess an angular 

momentum [1–3]. Arising of a controlled angular momentum provides a possibility for 

controlled rotation of micro-objects locked by corresponding optical traps. Angular 

momentum of a field may be considered at each spatial point. Averaged angular 

momentum may also be considered for some spatial areas. It is well-known that the 
angular momentum may be separated into a spin momentum associated with elliptical 

polarization, and an orbital one produced by a beam structure (see, e.g., Refs. 2 and 4). 
However, the density zj  of the angular momentum (at least, of its orbital part) is 

dependent upon the location of the axis 0=r  (i.e., the “point of applying”), with regard 

to which the parameter zj  is calculated. As a result, some ambiguity appears. At the same 

time, another physical value closely associated with the angular momentum, a space 
distribution of characteristics of the Poynting vector (or, rather, its transverse 

component),  represents a univocal function of coordinates of each field point. 
Distribution of parameters of the averaged Poynting vector for Laguerre-Gaussian 

beams has been considered in [5, 6]. However, the behaviour of Poynting vector has been 

analyzed only for homogeneously polarized fields and “symmetrical” beams [2, 5] . 
At the same time, the analyzed fields can be more complicated, e.g., when their 
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polarization is inhomogeneous. Distribution of transverse component of the Poynting 
vector for these fields may be characterized by a system of certain points, i.e., a net of 

Poynting singularities [7]. The importance of these points comes from the fact that the 

characteristics of this singular net, such as the Poynting field skeleton, determine 

qualitative behaviour of the Poynting vector at each of the field points [7]. For instance, 

vortex Poynting singularities [8] are the points, around which the circulation of transverse 
component of the Poynting vector is observed. In other words, we deal here with the 
points which are intersections of the plane under analysis and the axis of the angular 

momentum. Thus, the distribution of characteristics of the Poynting vector components 

would contain important information on the field, which is concerned with the energy 

flows. 
Nevertheless, one can state that no method for experimental analysis of the Poynting 

vector components and their singularities has been developed up to now. In the present 

work we would like to demonstrate that the components of the Poynting vector may be 

analyzed with traditional optical methods. 
It has been shown [3, 7] that the instantaneous components of the Poynting vector 

may be written as 
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iA  and iΦ  ( yxi ,= ) denote respectively the amplitudes and phases of the corresponding 

field components, l
iA  and l

iΦ  are their partial derivatives, yxli ,, =  and ck /ω=  

represents the wave number. Note that here the axis z  coincides with a preferential 

direction of the wave propagation. 
One can show after some algebraic transformations that the averaged components of 

the Poynting vector are as follows: 
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The second and third terms in the braces appearing in the r. h. s. of the first two rows 
of Eq's. (4) may be rewritten as follows: 
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where yxi ,= . Then the system of Eqs. (4) is transformed to 















+≈

∆
∂
∂+Φ+Φ−≈

∆
∂
∂−Φ+Φ−≈

}{
8

)}sin(]{[
8

)}sin(]{[
8

22

22

22

yxz

yx
y
yy

y
xxy

yx
x
yy

x
xxx

AA
c

P

AA
x

AA
k

c
P

AA
y

AA
k

c
P

π

π

π

.    (6) 

It follows from Eqs. (6) that one of the possible ways for measuring the components 
of the Poynting vector is a complete analysis of the orthogonal components, namely: 

(i)  measurements of intensities of the components (in order to determine the 
component amplitudes and their derivatives); 

(ii) phasometry (interferometry) of the components (in order to determine the 

component phases and their derivatives. 
However, the phase difference ∆  between the orthogonal components is also 

included in Eqs. (6). Let us stress the following points: 
(i) as known from the work [9], measurements of the “absolute” phase in optics is 

“problematic”. Only the phase difference between the object wave and the reference one 

is fixed. In other words, the phase is measured up to a constant additive term. 
(ii) it is practically impossible to create experimental setup for measuring 

simultaneously the phases of the components with the same constant additives. 
Consequently, the phase difference ∆  cannot be measured with a sufficient accuracy 

using the analysis of the components. 
However, this parameter could be easily measured by means of Stokes polarimetry 

[10]. The Stokes parameters for any monochromatic wave acquire the form (see [9]) 
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Then Eqs. (6) may be used when analyzing the Poynting vector components. Taking 
Eqs. (7) into account, we transform Eqs. (6) to finally obtain 
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Thus, the Poynting vector components are defined by the Stocks parameters and the 
derivatives of the component phases. Note that only one component (to be specific, y -

component) is required for the phasometry, because the phase of the other component is 

defined as yx Φ+∆=Φ . Obviously, the phasometry of ‘smooth’ waves (i.e., those 

including no singularities in the area under analysis) is preferable in any practical 
situation. 

It is known (see, e.g., Ref. 11, whose subject is closest to that of our work) that the 
three types of measurements are necessary in order to determine the phase of scalar field 
at each point of that field, which result in the following: (i)  intensity of the component 

field, 2
ii AI = , (ii) intensity of the reference wave, 2

rr AI = , and (iii) intensity of the total 

field, sI . The component phase (up to the constant additive) may be derived from the 

relation 
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Naturally, the phase derivatives k
iΦ  included in Eqs. (6) and (9) are independent of 

the constant additives. 
It is worth mentioning that the accuracy of the phase measurements for the 

components may be essentially increased if one uses a two-beam interferometric 
technique, in which a reference wave with the phase shifted by χ  is mixed with the 

component field [11]. In this case five measurements are made, providing the intensities 
of the component alone and the reference wave alone, as well as the mixed waves with 

0=χ  and 2/πχ ±= . This leads to a substantial degree of redundancy, which is helpful 

for reducing experimental errors. 
In conclusion, we are in a position to state that joint application of the traditional 

interferometry and the Stokes polarimetry should enable one to determine unambiguously 
the characteristics of the Poynting vector components at each field point. 
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