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Abstract

We consider both theoretically and experimentally propagation of a singular
beam along a single chiral crystal and a stack of two such crystals with the oppo-
site signs of their chirality coefficients. We develop a matrix approach for de-
scribing behavior of the beam singularities. The beams with the eigen polariza-
tion turn out to carry centered optical vortices with double topological charges. At
the same time, a circularly polarized beam, when propagating, acquires an addi-
tional unrequited phase having much to do with the geometrical Pancharatnam
phase. The sign of the phase is defined by a direction of polarization circularity.
To display experimentally the distribution of the geometrical phase we suggest
employing two circularly polarized beams with opposite the circularities. The
spiral image appearing behind the binary crystal system and the polarization fil-
ter represents a set of spiral and ring edge dislocations of the wave front. They
outline a profile of geometrical phase of the beam. Such the dislocation system is
known in optical crystallography. It is nothing else than the four-fold Airy' spiral.
We show also that the system of a chiral crystal with a purely anisotropic crystal,
as well as a single chiral crystal combined with a circular polarization filter, are
able to form a dark spiral line, too. However, such the line does not represent the
edge dislocation and is shaped by means of a chain of optical vortices.
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1. Introduction

Birefringent crystals represent promising media for producing vortex-bearing beams [1,
2]. Among a variety of vortex-beam properties in anisotropic optically uniaxial crystals
(see, e.g., [3-15]), one can single out appearance of a degenerate singular point (a so-
called C point [16]) at the beam axis, which is encircled by contours with sharply shifting
polarization states. In terms of scalar waves, such a singular point corresponds to a dou-
bly charged optical vortex [4-7, 11, 14], i.e. a circularly polarized components of the
beam propagating along a crystal axis carry optical vortices with the Gaussian envelope
[17]. Moreover, such crystals have enabled us to produce high-quality polychromatic op-
tical vortices with a double topological charge and high energy efficiency [4, 6, 11, 19-
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21]. Notice that a conical refraction in biaxial crystals not only promotes generation of
Bessel-Gaussian beams [3, 10, 12] but also produces singly charged optical vortices [8,
13, 14].

Beside of chirality (optical activity) caused by a circular birefringence, a majority of
available optically transparent crystals have also a linear birefringence, resulting in
splintering a wave field into ordinary and extraordinary beams. Such chiral crystals trans-
form simultaneously the polarization state and evoke additional rotation of the polariza-
tion ellipse at each point of beam cross-section [22]. Availability of chirality in crystals
complicates essentially the process of formation of singular beams [9, 18], changing a
fine structure of optical vortices via deformation of beam fields with eigen polarizations.
Indeed, a plane wave transmitting at some angle to the optic axis of a purely anisotropic
crystal has two linear eigen polarizations directed along and perpendicular to the plane
formed by the wave normal and the crystal optic axis [23]. However, eigen polarizations
of plane waves in chiral crystals are elliptical ones, their polarization state depending on
the wave propagation direction [24,25]. Thus, a beam with the eigen polarization acquires
a complex distribution of polarization states over its cross-section. It cannot help pro-
voking generation of new features of singular points in vector fields.

The aim of this work is to study theoretically and experimentally polarization and
phase singularities of the beam field for a system of chiral crystals.

The paper includes four sections. The matrix approach for describing beam propaga-
tion through a chiral crystal is considered in the first section. The second section is de-
voted to analysis of field structure of the beams with eigen polarization. The third section
touches upon a question of birth and annihilation processes of optical vortices in
topologically neutral beams transmitting through a system of two chiral crystals and a
polarization filter. We show there that the beam field after the system acquires a
geometrical phase. We discuss also the experiment on detecting this excess phase. In the
fourth section we display that the well-known Airy' spiral is a result of superposition of
two vortex beams, whose fields are perturbed by geometrical phases with the opposite
signs. Finally, in the Appendix we consider geometrical phase properties and derive the
condition for the Airy' spiral.

Let us build a model for the Gaussian beam propagation along the optic axis of a
uniaxial chiral crystal. Let the optic axis of crystal is directed along { axis of a lab frame
of reference. We assume for simplicity that the optical activity is the same for all crystal
directions. The permittivity tensor € for the plane wave with the wave vector

k=, k, k.| canbe written as [22]

Py

_ 0
&y =&y tieyg,k, (1)
where e, is the antisymmetric unit tensor, g, stands for the gyration tensor. The tensor

6‘[-(,(0) describes the linear birefringence of the crystal.
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The diagonal elements ¢, =¢&,, =&, and &;; =&, of the first tensor 51-(/(0) in

Eq.(1) enable us to find a permittivity for the waves transmitting along the k direction
[23] so that:

2 : 2
Lﬂzcos 9+sm 0’ @)

& & &

o

the angle @ is formed by the wave vector k and the crystal optical axis (see Fig.1a,c)
The theoretical analysis of the beam propagation in a pure anisotropic crystal (a
crystal with a linear birefringence only) in the paraxial approximation can be done with
either the method of spectral integral [7] or the method of mode beams [17]. In our case
of chiral crystal, it is also possible to employ both methods (see e.g. Ref. [9, 19]) though,
for simplicity we will make use of an approximate matrix approach similar to that
presented in Refs. [4, 6, 17].
First of all, we note that paraxial vortex beams in a uniform medium can be de-
scribed in terms of plane waves with the wave vectors lying on the surface of hyperboloid
of revolution [26-28] (see Fig. la). In the case of purely anisotropic crystal we can work

AY

Fig. 1. The sketch of the beam propagation in chiral crystals: (a) the ray AB in the
beam laying on the surface of hyperboloid of revolution, (b) the ray projection onto
the beam cross-section, and (c) transformation of the induction vector p. The
optic axis of crystal is directed along the z axis.
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in a similar way [6, 7]. In our particular case, we assume that the crystal chirality is very
small, i.e. An.<<An, (An, =n, —n,) so that the method mentioned above can be used,

too.

Let us consider the wave normal trajectory AOB (see Fig. la) lying on the
hyperboloid surface. The wave vector k of the electric induction D is directed along the
normal to the wave front, while the vectors with eigen polarizations lay in the plane
perpendicular to the wave vector. We will seek for the transformation matrix M for the
electric induction D of the Gaussian beam propagating in the crystal. Let us divide the
crystal into N elements with the thickness Az (see Fig. Ic) and assume that, at first, the
crystal changes the polarization state of the wave via the linear birefringence and then
rotates its polarization plane via the circular birefringence. Each section of the crystal
induces the phase difference between the D components, which in the linear basis is

equalto A, = ]é\; , where (see [23])
S ~kAn, Lsin*@ ~kzAn,k; 3)
where L is the geometrical length AOB ( L — z in the paraxial approximation and z =d

is the crystal thickness), k] = .|k + ky2 stands for the transverse wave number. The first

transformation matrix has the form (see, e.g., Ref [27])
o .. O .. 0 .
cos—— +isin——cos2 ¢ isin——sin2¢@
G = 2N 2N 2N (4)
... 0 . o .. 0 ’
isin——sin2¢ cos—— —isin——cos2¢p
2N 2N 2N
On the other hand, the action of the circular birefringence can be presented in the
same basis as

cos % —sin %
8= py sl (%)
sin“—  cos“—
N

where y = An.d-/k; +k* . If the element thickness is very small Az—>0 then the

matrices (4) and (5) commute and we have

) o .
1+i——cos2 i——sin2 1 -
Y AR Y g

J . 1) 4
i——sin2 l1—i—cos2¢ || —= 1
2N v 2N v N
where
A . 0 [cos2¢ sin2e _7(0 -1
AN_ZQ]\/(sin%o —cos2¢ /) ?_ﬁ 1 0) )

The transformation matrix of the crystal can be written as
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M =lim, H(l +Ay +71\/)z limy,, HeXP(AN +77N): exp( f [A(Z)+77(Z)]d Z) ®)
N

This may be reduced to the standard form [29]:

0 .
5 y+i—sin2¢
cosA+i——sinAcos2¢ —=——sinA
2A A

5 ’ ©)
—7+z§sm2¢)

sin A cosA—iisinAcos2(o
2A

where A =-/(6/2) +77.

The matrix (9) transforms the transverse components of the induction vector

Dx out Dx in
AL

y y

according to

If the field distribution at the plane z =0 corresponds to Gaussian envelope,
2
P(z=0)= exp(— ZJ : (10a)
0

where p is the waist radius, then its Fourier transform of the wave vector k distribution

is as follows:
2712
‘P(kx,ky )=exp[— pzli

The spectral integral for the field at the arbitrary plane z of crystal in the paraxial ap-
proximation is

2z ©
¥ (r,¢,z)= Id 1) J‘de k, MD™(k )explik, rcos(p— ')+ ik.z}, (11)
o0

where k. = k? —ki. The major contribution to the integral (11) is given by the

directions of the wave vector K lying on the surface of hyperboloid of revolution. Thus,

we have
¥ (r,¢,z=d)~NM,D"¥(r), (12)
where
" cosA'+icosasinA’cos2¢’  (sina+icosasin2¢’)sin A’ (13)
L (—sina+icosasin2(p')sinA' cosA'—icosasinA'cos2¢' )’
cosa = A sinaz%, §'zkAdnLr2, A= (5'/2)2+;/’2, y'=Anckd, and

k=-le k,, here @' is the azimuthal coordinate of the observation point at the beam
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cross-section and

2 2
W(r,z=d)=exp —ikzr—Z /Zexplikd), Z=d+iz,, z, =k§. (14)

Since the wave vectors for low-order Laguerre-Gaussian beams bearing optical vor-
tices are also required to lye on the hyperboloid surface, we can rewrite the function (12)
as

A\ 2
‘P(x,y,z=d)= ”71)) exp _ik2r7 /Zexp(ikd), (15)

where [ is the topological vortex charge at the plane z =0. The above requirement is not
fulfilled for high-order Laguerre-Gaussian beams so that we cannot use the transforma-
tion (12) in these cases.

2. Singular beams with the eigen polarization

Let us consider behavior of the beams transmitting along the z axis (consequently, along
the optic axis) in the chiral crystal, which has the eigen polarization of the beams in
purely birefringent crystal. It is well-known [7, 17] that the singular beams with the eigen

polarization of the lowest order represent ‘TE> and ‘TM > modes:

TE) = (_yxj ¥(r.2)/Z, |TM)= (;) ¥(r.2)/Z . (16)

Using Egs. (12), (13) and (16), we can plot polarization distribution of the field after
the crystal. Fig. 2 is a result of the corresponding computer simulations. It is seen that the
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Fig. 2. Transformation of mode beams with the TE and TM polarizations in the chiral
crystal with An, =2-107, An. =3-10" and d =1lcm : (a) TE mode and (b) TM mode.
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field structure changes essentially and the straight lines turn into spiral ones. However, in
contrast to Ref [30] that describes the evolution of singular vector beams with a spiral
orientation of linear polarization, here we deal with the elliptical polarizations. The spiral
lines in our case are envelopes to a set of major ellipse axes. With moving the observation
point off the centre, the ellipse eccentricity gets larger.

To find polarization distribution of the beams with the eigen polarization in chiral
crystals, it is necessary at first to write the matrix (13) in the circularly polarized

basis M .. Here we make use of the transition matrices:

L:G ‘l."j, C:é(} flj (16a)

Then M. =LM,C or

. 1 [ . ’ . . ’ 7 ’
N ( cosA'—isinasinA"  icosasinA exp( 12(p)) (17)

¢ 5 licosasinA’exp(i2¢’)  cosA’+isinasinA’
The eigen values of the matrix (17) are
h=exp(£iA),
while its eigen vectors in the circularly polarized basis are represented by

- _( cosa expl(—i (p'))j - :((1+Sina)expg—i 40')) . (18)

“ (1 +sina)expli ¢’ —cosa expli ¢
By using the method of Stokes parameters [23, 31], we come to the expressions for
the inclination angle of polarization ellipse v ,
tan 2y =tan2¢

as well as the ellipticity as the ellipse axes ratio:

1 a
= —sec—
© 2 2

Fig. 3 illustrates the maps of polarization distributions corresponding to the eigen-
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Fig. 3. Polarization distributions in the beams m”™ (a) and m~ (b): An, =2.107,

An.=3-10" and d =2cm.
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vectors given by Egs. (18). The circular polarization is positioned at the beam axis. This
is the so-called C points [16]. As the observation point moves off the beam axis, the
ellipse eccentricity decreases and the polarization tends to linear one. The integral curves

for the vector m™ represent a set of concentric circles with the centre located at the axis.

The integral curves for the vector m ™ are the rays with a common centre lying at the axis.
In fact, the beams with the eigen polarization carry a doubly charged optical vortex nested
in one of the field components. While the beam transmits along the chiral crystal, the field
structure does not change with the accuracy of a scale factor.

3. Optical vortex generation in single and binary chiral crystals
3.1. Single crystal

Let us analyze the field structure for the beam passed through a uniaxial chiral crystal.
provided that the initial Gaussian beam transmitting along the optic axis is circularly po-
larized at the plane z=0:

w(z:o):(g_)xp(r):(gjw(r), (19)
where the function ‘P(r) is described by Eq. (10a). Using Egs. (12) and (19), we come to

1( cosA'—isinasin A’ ))‘P(r) (20)

out __ w7 in _ ~
¥ =MY¥ ~ 2 \icosasin A" exp(-i2¢’

The maps of the field distributions plotted in accordance with Eq. (20) are shown in
Fig. 4. The C point is positioned at the pattern centre. Around it, major axes of the polari-
zation ellipses form a regular spiral-like set of curves. In contrast to a similar pattern of
the field appearing after purely anisotropic crystal [6], in the chiral crystal we observe a
more extensive portion of the field with nearly circular polarization in the vicinity of the
centre, while the integral lines are sharply twisted outside it. The senses of the torsion are
opposite for the left and right circular polarizations of the initial beam.
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Fig. 4. The map of the beam field structure with the initial right (a) and left (b) circular
polarizations: An, =0.02, An.=1.5-10" and d =lcm.
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3.2. Binary chiral crystal

Let us try to compensate the polarization plane rotation with employing a second chiral
crystal with the opposite sign of the chirality. Naturally, such a binary system cannot
compensate the crystal chirality completely. However, it does underline concealed, inher-
ent properties of crystal-generated optical vortices.

One can obtain the matrix of the binary system by multiplying the matrices (17) with
the opposite signs of the parameter y :

’ s 2 A0 . : ' e : "\ —i2¢
NIO — 1( cos’ A’ —cos2asin’ A i2cosasin/’ (cosA —isinasinA’)e ‘/’]. 1)
4

i2cosasinA’ (cosA’ +isinasinA’)e™ cos’ A’ —cos2asin’ A’
When the initial Gaussian beam ((1)) ‘P(r) propagates, the wave field is described by the

expression

ou _ | DT ‘I’(V, Z) cos? A’ —cos2asin® A’
you =~ = . S T N e | (22)
D 4 \i2cosasinA (cosA +zsmas1n/\)e

As a result, the D~ component carries a doubly charged optical vortex. In the
Appendix, we show that this vortex beam acquires a phase access that has much to do
with the Pancharatnam phase [32, 33]. This phase is a peculiar indicator of the beam
state. So if the Pancharatnam phase is not zero, the vector field can be structurally
unstable and it bears an orbital angular momentum [33]. The beam with the opposite

circular polarization (?)‘P(r)acquires the geometrical phase with the opposite sign. The

phase access affects the vortex structure. Indeed, Fig. 5 demonstrates the wave front

surface for the D~ beam component. While the wave front of the beam transmitted
through a single chiral crystal has a form of straight helicoid (Fig. 5b), the form of that
helicoid is deformed after the binary crystal. The helicoid generatrix then becomes spiral
(see Fig. 5a).

Fig. 5. The axial portion of the D~ component wave front after the binary crystal (a)

and the single crystal (b).
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4. Airy' spirals, optical vortices and the geometrical phase

Generally speaking, spiral-like equiphase lines are intrinsic to any free-propagating vor-
tex beam because of its spatial divergence. As a result, we observe a spiral pattern in the
interference experiment [34, 35]. Thus, it is necessary to use a more accurate experimen-
tal approach for bringing to light the phase access. A necessary condition for detecting the
vortex geometrical phase is careful control of the wave front form for two superposed
beams. It could be achieved if the two beams are subjected to wave transformations, un-
der which their dynamic phases change identically while the geometrical phases experi-
ence different perturbations. The combined action of two crystals and a linear polarizer
results in a characteristic pattern of the intensity distribution shown in Fig.6.

In polarization optics, the images presented in Fig. 6 have come to be called
conoscopic patterns [22, 25], whereas the spiral-like or fylfot-like conoscopic patterns are
called as fourfold Airy 'spirals [36,37].

Let us analyze the physical nature of these spirals. To this end we write the matrix
(21) in the linearly polarized basis, using the relation M, =CM,L and Eq. (16a), so

that we come finally to the equation

D) = (gj - ((1)) ¥(r),

D = [0052 A’ —cos2asin® A’ +icosasin A'(cos A’ cos2¢’ +sinasin A'sin 2(p’)]\l’(r) ,(23)
D, =i2cosasin A’ (cos A'sin2¢’ —sinasin A’ cos 29’ )¥(r). (24)

where

B=mn/2
Fig. 6. Intensity distribution for the beam passed through the binary crystal system
and the polarizer: (a, b) two chiral crystals; (c, d) chiral crystal and purely anisotropic
crystal.
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From Eq. (23) we find that the D, component vanishes if
cosA'sin2¢ +sinA’cos2¢p =0, (25)
sin A'(?)=0. (26)

Eq. (25) describes a fourth-fold spiral, while Eq. (26) characterizes a set of centered
circles.

Fig. 7 demonstrates a shape of these curves. Transition through these curves
corresponds to the field phase leap by 7. The points of intersection of the ring and spiral
lines in the figure are doubly degenerate, similarly to that occurring at the centered point.
They have nothing to do with the optical vortices. The transition trough the point is not
accompanied by the 7 -phase leap. The relief of these dislocation lines is well traced by
colour-tinted lines in Fig. 6.

Consequently, the lines represent a ring and

2 .
y spiral wave front dislocations [16]. As we have

1] shown in the Appendix, the geometric Pancharatnam
phase [32, 33] acquired by the beam transmitted
0 through the binary system of chiral crystals plays a
major role in producing these dislocations. The so-
called transverse geometric phase vanishes along the

2] spiral lines: Fl(r,go) =0.

2 1 0 1 5 2 Notice that the rotation of polarizer axis by the
Fig. 7. Spiral and ring wave  angle 7/2 turns the black line into the white one.
front dislocations.

Naturally, by differentiating the intensity 7, oc ‘Dx\z
over the coordinate ¢’ and equating the derivative to zero we come to Egs. (25) and (26)

describing the positions of the intensity maxima.

Thus, the Airy’ spiral is a result of interference of two vortex beams with the opposite
double topological charges and the opposite signs of their geometrical Pancharatnam
phases.

One can reveal that the dark spiral-like line appearing in the conoscopic pattern of
coherent beam passed through the binary system of chiral and purely anisotropic crystals
is not a spiral wave dislocation. It is produced by a chain of optical vortices, outlining the
minimum of the beam intensity in the form of spiral-like line.

Getting finished with the Section, we revert again to a single chiral crystal. We wish
to turn to Ref [36] where the authors state they have observed a two-fold Airy' spiral in
the beam transmitted through a single chiral crystal. Namely, the linearly polarized light
then passed through a chiral crystal and a quarter-wave phase retarder. In fact, their ex-
periment looks like the one mentioned above, involving the binary system of both chiral
and anisotropic crystals. Thus, the authors could not observe the Airy' spiral because their
experimental set-up did not allow shaping the wave front with a peculiar distribution of
the geometrical phase.
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5. Conclusions

We have developed a matrix approach for describing propagation of paraxial Laguerre-
Gaussian beams through the system of chiral crystals. We have shown that the circularly
polarized singular beams passing such the system carries centered optical vortices with
double topological charge. Besides, these beams turn out to acquire the geometrical
phase, whose sign is defined by the circulation of the initial beam polarization and the
crystal chirality. In order to elucidate the geometrical phase in the beam cross-section, we
have employed a superposition of two circularly polarized beams transmitting through the
binary system of chiral crystals with the opposite signs of their chirality. Having passed
through the system, the beams become superposed. The interference process allows com-
pensation of any deviations of the dynamic phases, while the geometrical phases play a
major part in producing the resulting pattern. We have revealed that a geometric set of
points, where the geometrical Pancharatnam phase vanishes, forms a four-fold spiral of
zero intensity. Transmission through the spiral gives rise in a leap of the beam phase by
7 . It means that the spiral represents a pure edge dislocation. In crystallography this sin-
gular line is referred to as the Airy' spiral. We have also shown that the spiral-like dark
curves in the beam passed through the binary system of chiral and anisotropic crystals are
not spiral edge wave front dislocations. They are formed by a chain of optical vortices.
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Appendix: The geometrical phase

If a wave field is subjected to a series of successive transformations that return the field to
the initial state, the wave function of the field acquires an additional phase factor. It
means that the wave field transmitting through a complex system accumulates not only a
dynamic phase but also a peculiar nonintegrated phase that has come to be called a geo-
metrical phase [37]. Indeed, one can characterize the wave in some space of the wave
states. As a rule, the state transformations are accompanied with moving the representa-
tive point of the field along some space trajectory. If the wave field returns to its initial
state, the trajectory gets closed. For closed trajectories, the phase access or the geometri-
cal phase are proportional to a solid angle formed by a portion of the surface cut out by
the closed curve in the state space (see Fig. Al). Obviously, the geometrical phase is not
zero or 2z if the trajectory is not a plane curve. A well-known type of the geometrical
phase is associated with a movement of wave along a spiral trajectory. It is the so-called

Ukr. J. Phys. Opt. 2007, V8, Ne3 177



Volyar A. et al

Rytov-Vladimirsky-Berry ~ phase

[37]. This phase is responsible for

rotation of the linear polarization.
The second type of the

geometrical phase is associated
with a cyclic transformation of the
wave polarization state, the so-
called Pancharatnam phase [38]. A

polarization state of the wave field
is characterized by a point lying on
the  Poincare  sphere.  The
coordinates of the point on the

sphere with the unit radius are the
Fig. A1. A trajectory of polarization states on the

Poincare sphere caused by a variation of the
azimuthal coordinate ¢, plotted in accordance

Stokes parameters [23]. A closed
trajectory cuts out a portion of the
sphere surface with the solid angle
with Eq. (A2) for An, =0.02, An.=1.5-107, O and the magnitude of the
d=lem and r=2-10"m . Pancharatnam phase I is then
equal to I'=Q/2 (see Fig. Al).

The Pancharatnam phase can be conventionally divided into the longitudinal (1"‘ ‘)

and transverse (I', ) geometric phases. For example, a plane wave transmitting through a

stack of birefringent plates, whose crystallographic axes are rotated by some angle with
respect to each other, experiences a cyclic transformation of its polarization state. Thus,

the geometric phase (or, better to say, the longitudinal geometric phase FH) entails

variations of the longitudinal coordinate z [32]. However, if a divergent beam of rays
propagates along such the stack, there appears a field of nonuniformly distributed polari-
zation states in the beam cross-section at the entrance end of the stack. The polarization
states occupy some region on the Poincare sphere. In general, we have infinite number of
versions for moving along closed trajectories. As for the physical aspect, moving along a
closed trajectory in a curved space is associated with a time matching of events in local
reference frames, accompanied by a parallel transport of the vector along the closed con-
tour [39]. A choice of the contour shape is defined by a particular physical task. For ex-
ample, the contour may be chosen in the form of a curve that encircles the beam axis or a
contour lying along some peculiar line etc., so that the closed curve on the Poincare
sphere (consequently, the transverse geometrical phase I'| ) is a result of variation of both

the radial () and azimuthal (¢ ) coordinates [33].

In our case related to the propagation of Gaussian beams along a binary system of

chiral crystals, we will look for variations of the transverse Pancharatnam phase I'; . Let

us write the Stokes parameters [29] in terms of the electric induction vector D :
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S, = %(D+D: +D'D), S = %(Dpf ~D'D),
S, = é(D_Dj _D'D.), S, = %(D+Di ~D'D). (A1)
Using Eq. (22) and the notation S, = ng j=1,2,3 we come to the expressions
S, =4F(r W (r.0), S, =4F( )W, (r.0),
S, =F(r) —4cos? asin A{cos? A’ +sin” asin? A'), (A2)

with
F(r)=cos® A'—cos2asin® A", W,(r,p)=cos A'sin2¢ +sinasin A'cos2¢,
Wz(r,(p)z cosA'cos2¢ —sinasin A'sin2¢ . (A3)
The geometric Pancharatnam phase I', vanishes provided that the representative

point moves along the major meridians and the equator [38]. It can take place if either
S, =0 or S, =0. In particular, we find that T (r,¢)= 0 under the conditions

cosA'sin2¢ +sin A'cos2¢ =0 (A4)

and
cosA'cos2¢ —sinA'sin2¢p =0. (A5)
Both the expressions represent spirals in the coordinates (r,p). In fact, the

expression given by Eq. (A4) coincides with Eq. (25) written for the four-fold Airy'
spiral.
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