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Abstract

The Maxwell equations with accounting for tensors properties of time have been
considered. The effects that follow from such consideration are described. These
are the appearance of vacuum polarization, anisotropy of electromagnetic wave
velocity in vacuum, anisotropy of the vacuum dielectric permittivity, rotation of
light polarization plane, as well as the existence of longitudinal components of
electromagnetic wave and the rotational (non-potential) component of electric
field caused by electric charges.

Keywords: Maxwell equations, time, speed of light, physical vacuum

PACS: 03.50.De, 42.25.Bs, 95.30.Sf

1. Introduction

One of the commonly used notations of Maxwell equations for vacuum is as follows (see,
e, [1]):

E
& % =rotH

OH
~H—, = rolk, (M

divE =0
divH =0

where £ and H are respectively polar and axial vectors of electric and magnetic fields,
¢t is time represented by scalar quantity and &, and g, stand respectively for electric
permittivity and magnetic permeability of vacuum. The first two relations in Eq. (1) are
known as the Faraday’s and Ampere’s laws, respectively, while the last two as the
Coulomb’s and Gauss’s laws. In order to describe electromagnetic wave propagation in
material media with certain electric and magnetic properties, the relations (1) are
supplemented with the constitutive relations
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J+58—E= rotH
ot
OH
—u—-n=rotE
H ot
divD = p ()
divB=0 ’
D, =&,E; =6 E, + P, =(5; + " 1;)6,E,
B, =pH; =& H; + M, =(5; + ", ) 1mH,
J, = J,.jEj

where o, is the Kronecker symbol, P, and M, represent respectively polar and axial
vectors of polarization and magnetization, D,, B, - vectors of electric and magnetic
induction, &, (‘y;) and 4, (", ) polar second-rank tensors of electric and magnetic
permittivities (susceptibilities), o, is a polar second-rank electric conductivity tensor

and, finally, J, denotes a polar current density vector, p - electric charge density.

The Maxwell equations have been repeatedly expanded and reformulated in order to
search for possibility of their “symmetrization”, i.e. to find the solutions describing
“magnetic charges”. For example, Dirac [2] has postulated existence of magnetic
monopoles, which have never been detected experimentally and has proposed the
following notation of the Maxwell equations:

ga—E +J, =rotH
ot
oH
yE-I—Jm =-rotk 3)

edivE = p,

udivl = p,,

Another examples are the approach by Munera-Guzma [3] based on the assumption
that the current and charge densities are merely electromagnetic entities or the approach
by Harmuth and Meyl [4-8] assuming that there exist no monopoles, neither electric nor
magnetic, while the electric charges are then only secondary effects of electric and
magnetic fields. Inomata [9], Rauscher [10] and Honig [11] have used imaginary axis for
including imaginary magnetic charge and current into the Maxwell equation.
Summarizing different approaches, one can find that no satisfactory “symmetrization” of
the Maxwell equation has been found up to now. Though the electric charges are
measurable, there is no strong evidence for detection of magnetic monopoles, in spite of
continuous experiments (see, e.g., [12-18]). Thus, one comes to conclusion that no
magnetic potential fields could be postulated and non-symmetric form of the Maxwell
equations is still correct. Nevertheless, the facts of existence of magnetic monopoles are
still mentioned in some works (one of the recent ones is [19]). In the present paper we
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will rewrite the Maxwell equations, assuming tensor properties of the time, in order to
check a possibility of their “symmetrization”.

On the other side, the changes in the refractive index of vacuum induced by the
gravitation field, which have been mentioned in [20-25], seem to be described in frame of
a quantum theory with accounting for virtual electron-positron pairs. However, for
description of these phenomena by electrodynamic relations it seems to be necessary to

introduce some dielectric constant, which differs from the free space one &, and,

moreover, possesses tensor properties. Namely, in the present paper we will argue that,
after accounting for lowering of space symmetry and appearing of tensor properties of the
time it becomes possible to describe these problems by electrodynamics equations. It is
necessary to notice that the tensor character of the time can be a property of Early
Universe, which could possess a lower symmetry [16].

In the recent report [20] it has been shown that, in frame of the weak-field gravity
and optical-mechanical analogy approach [21-23] (or the polarized vacuum approach

[24]), the refractive index n and the optical-frequency impermeability B, :(1/ nz)

i

perturbed by the gravitation field of spherically symmetric mass may be written as

n:1+24/,BU,M(g”2), 4)
B, =1-4JB,M(g"), )

where S, = G/ ¢, , C, is the light speed in vacuum and G the gravitation constant. The

square root of the gravitation field strength (the so-called free-fall acceleration) gl/2

describes a scalar action, which cannot lead to symmetry lowering for a medium. On the
other side, according to the results of our analysis [25], the initial birefringence of
anisotropic media can be changed by the action of gravitation fields, even in the case of
spherically symmetric mass. Furthermore, one can assume that the gravitation field of
non-spherical mass would lead to lowering of the space symmetry, appearance of its
anisotropy and so to an optical birefringence [26, 27]. Besides, the anisotropy could also
appear due to considerable gradients of some scalar parameter [28] (in our case, the
gravitation field of spherically symmetric mass). Those phenomena might be treated as
gradient parametric optical effect [29].

The quantities f and G in Eqgs. (4) and (5) are constitutive coefficients of a 3D flat
space (or the corresponding optical medium) [20] and they should therefore obey von
Neumann principle. Hence, lowering of initially spherical symmetry of the space by the
gravitation field or the other fields can lead to appearance of tensor properties of the

coefficient G. Moreover, if # and G are constitutive coefficients, then it follows, e.g.,

from the relation for the Hubble constant H* = g p.7G (with p. being the critical density

. . I ..
of the Universe), that the above constant (because of the relation H = ’ this is true of the
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time, too) plays a role of property of the flat space in the model of optical medium. The
existing fields lead to lowering of the space symmetry, and these lowered symmetry
groups allow a subsequent reduction of symmetry of properties of the space, i.e., the
symmetry of the time (or that of the Hubble and the gravitation constants). Therefore, due
to the Curie principle, the symmetry group of the flat space should depend on the field
configuration and, according to the Neumann symmetry principle, it should be a subgroup
of the symmetry group of the time. In other words, lowering of the space (or polarizable
vacuum) symmetry under the action of gravitation field should lead to appearance of
tensor properties of the gravitation coefficient G, the Hubble constant H and the time ¢
[20], i.e. lowering of the time symmetry from a scalar to a second-rank tensor one. Notice
that anisotropy (or deviation) of the gravitation constant from its Newtonian value is a
subject of extensive theoretical and experimental investigations (see, e.g., [30-34]). The
latter are additionally stimulated at present time by the observation of acceleration of the
spacecrafts Pioneer 10 and 11 [35]. It is interesting to remind that the antisymmetric (AS)
part of the Hubble constant has been recently used for describing cosmic velocities field
in large scale [36]. Such a generalization of the Hubble constant seems to be followed by
a similar generalization of the time.

In the present paper we will show how the Maxwell equations can be modified with
taking tensor properties of the time into account and which conclusions follow from this
approach.

2. Theoretical approach

Let us consider a second-rank polar tensor of the time as asymmetric tensor #; , which can
be divided into the symmetric part,
s 1
7?,‘ :E(tij +tji)5 (6)
and the AS one,
as 1
]-;j ZE(t,]‘_tﬁ)- (7)

. . . 1 -
The symmetric part consists of a spherical (§’mm5jk) and a deviation

D s 1
(tij = T;j _Etmm

;) parts. It is the spherical part of the time tensor, in fact a scalar,

characterizes processes in the isotropic space.

We will study the Maxwell equations for electromagnetic field, while considering
the time as a second-rank tensor in the Euclidian space. Let us define the time tensor as a
quantity that can be reduced to traditional definition of the time, i.e. a quantity that can be
reduced to the scalar time in the non-degenerated isotropic space or the time as one of
coordinate axes in the Minkowski space. As an example, let us consider two neighbouring
volumes of the space. In one of which (namely, B) the anisotropy appears in the moment
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of time #,, while the volume 4 remains isotropic. The observer situated in the volume 4

uses a scalar time ¢, for describing of processes that take place in the neighbouring

anisotropic volume B. Notice that, according to the Neumann symmetry principle, the
anisotropy of the volume B should permit the appearance of tensor properties of the time.
For describing the time as a second-rank tensor, the observer situated in the volume A4
should establish a functional dependence of each tensor component of the time on the
scalar time which is a property of the volume 4. Thus, we write the time tensor as

A

A A A
tmm + tmm Al‘ll Z‘mm A1‘12 tmmAtU
A A A A
tij = _lmmAtIZ t mm + lmmAtZZ tmmAtZB =
_tr;:m AIB _trgm At23 tr/;:m + trf:m A1‘33

, 3
1+A, AL, Al

A A s as
=t | =At, 1+Ar, At,, |= 1 0l +]}j + 7}j )
Aty Aty 1+ At

where the diagonal components include the unit tensor [/, the symmetric tensor
At; =At;, =T, and the AS tensor Az, =—At;, =T.", with ¢! denoting the spherical part

ij [/ mm
of the tensor (i.e., scalar). The equation for the electric component of electromagnetic
wave may be rewritten with Eq. (8) as

E= Zexp(iwt” (I +T; +T;*))exp(ikr), )]

mm

where @ is the frequency, k the wave vector and » the radius vector. Then the partial
derivative would be defined as follows:
0 B 1 0
At (I+T +T™)] (I+T; +T*) o,

mm mm

(10)

3. Results and discussion
a) Ampere’s and Faraday's laws

mm

Replacing the time in the Maxwell equations according to #—1t" (I +T; +T;") and

using Egs. (9) and (10), one can obtain the two first Maxwell equations with accounting
for tensor properties of the time:

0B,
(rotE), + ! =0
(U +T; +T7") o,
. oD arn

J

(I+T; +T7) ot

mm

(rotH), —

Let us study the behaviour of electromagnetic wave represented in the form of

Eq. (9) for the case when only symmetric part of the time tensor 7;; exists:

E =éexpliat, (I+T;))exp(ikr). (12)

mm
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Let us take into account that the exponential function of the matrix can be presented
as [37]

0 lwt/l ] + TS n
n=0 n:
exp(iot! (1+T) 0 0 | )
) 0 exp(iat,), (1+Ty) 0
’ 0 exp(iar,), (1+T3)

Then Eq. (12) may be transformed to

exp(iot, (1+T) 0 0
E=e 0 exp(iot], (1+T5,) 0 exp(ikr) =
0 0 exp(iot;,, (1+T3)
e |lexp(iot! (1+T) 0 0
=le, 0 exp(iot), (1+T5,) 0 exp(ikr)=.  (14)
e. 0 0 exp(iot) (1+T5)

e, exp(ia)t"i (1+T17)exp(ikr)| |e, exp i(a)t,’;m (A+T)+kr)

mm

o (1+ T3y ) exp(ikr)| =|e, expi(et,,, (1+T;,) + kr)

mm

e.exp(iot! (1+T3)exp(ikr)| |e.expi(wt, (1+T3)+kr)

mm mm

=le, exp(iot

If the phase is constant, one can write the following system of equations:
(ot} (1+T3)+kr)=const
(ot (1+T)+kr)=const . (15)

mm

(wt) (1+T3)+ kr) = const

mm

After derivation of both sides of these equations (dt% ) we obtain

(@ +T)) +kv,) =0
(o(1+Ty) +kv,) =0, (16)
(@1 +T3) +kv.)=0
and so the phase velocities v, of the electromagnetic wave are given by
v, =¢(1-T})
v, =¢,(1-Ty). (17)
v. =¢(1-T5)
From Eq. (17) it follows that the increment including 7, should be only negative,
otherwise the phase velocity would exceed the light speed ¢, in the isotropic vacuum. It
is worthwhile that the above conclusion is in agreement with the time delay appearing in
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the gravitation field that follows from the Lorentz transformations. Since the sign of all

the components 7; in Eq.(17) is the same, this leads to important property of 7} :

ij
SpT; #0. Hence, the tensor properties of the time lead to anisotropy in the phase

velocity of electromagnetic waves, similarly to anisotropic crystals with the refractive

indices
n, = ! —=1+T}
(I_TH)
R S (1)
- (=T
n, = ! —=1+T
=T
or the dielectric permittivity of free space:
o o
gX: s = s
ToA-n) 1-T;
& o
&, V: » = T - (19)
VoA=L 1-Ty
e =% __%
0z s - s
I-T,F 1-T;

Assume now that the time tensor includes a real AS part 7" (e.g., T;, =-T,, ) and so

we have
E, 0 iot;, T" 0| |e,
E | = exp|-iat,, T 0 0[xle,
E. 0 0 of le
. . , (20)

coshot, T* isinhar, T 0 |e,

==|—isinh a)t;fmT,;” cosh a)t,’:mﬂj‘” O[xle,

0 0 1 e

where the matrix functions may be found, e.g., in [37]. Then such the property of the
time would lead to infinite increase in the electric field components, a physically

as

4 and lim —£—=0, the

impossible fact. If 7, is an inverse-proportional function of ¢

r. h. s. matrix in Eq. (20) would tend to the spherical matrix according to relation
E. coshar, T* isinhart, T 0 le| [1 0 0 le,
E,|= lim |-isinh ot,, T coshot, T 0|x|e,[=/0 1 0|xle,, (1)
E. 0 0 Il le.l |0 0 1f le.

since one has
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lim cosh wt! T =1

A oo mm* ij

' 22)
. . A

lim sinhwt’ T =0

A e mm™ ij

rrrrrr

As seen from the above relations, spontaneous degeneration of the time tensor
should vanish with increasing time scalar due to a reciprocal-power functional
dependence, i.e. such a spontaneous AS-like lowering of symmetry of the space and time
should disappear with time. For example, it can be a property of the early Universe.

However, if the AS part of the time tensor is purely imaginary (7;* =Im7;" ), the electric

field vector reads as

E, 0 ot " 0 le, cos(at;! ") sin(wt,! ") 0 le,
E |=exp —a)t,ﬁmTij‘” 0 0|xle,|= —sin(a)l;n’m]:f”) cos(a)t,‘:mlj]’”) Oxle . (23)
E, 0 0 0f le. 0 0 1 e,

Eq. (23) represents rotation of the vector E with respect to the vector e around Z
axis by the angle
p.=owt) T .

mm™ ij

(24)

Actually, Eqgs. (23) and (24) describe the gyration effect in the rotating space, whose
symmetry permits the existence of AS part of the dielectric permittivity

&y

oy = . 25
VT T (23)

For instance, if we account for, e.g., the rotation around Z axis only, the &, tensor

in the matrix representation will take the form

o ig,I,, 1+ T3;) 0
1+ T, A+ T +Ty,)(A+ ;)
Eoy = |- ifole(l‘tTfé) : o : 0 . (26)
A+T)A+T)(A+T) 1+ T,
. . £, T+ T3) - T
A+ +Ty,)(A+ ;)

Notice here that the Hermitian property of the dielectric permittivity tensor (i.e.,
purely imaginary character of the AS part of this tensor) is not postulated here though it
follows logically from Egs. (20)—(26). It is interesting to remind in this respect that an
imaginary part of the metric tensor has been introduced in the works by Einstein (see,
e.g.,
Hermitian principle ( g, = g;,) and its AS part describes a rotation of coordinate frame

[38, 39]) for development of unified field theory. Such the metric tensor obeys the

occurring during a parallel shift.
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The existing of nonzero AS part of the time tensor leads to interesting property of
divergence of electromagnetic field components. For example, if the electromagnetic
wave propagates along Y axis and the amplitude of the electric component vector is

ex

represented as | 0|, the resulting wave may be written as

E| |cos(ot! T*) sin(wt! T®) 0| e

X mm™ ij mm™ ij X
E,|=|-sin(@i!, 1) cos(@i,T*) 0/x|0|expi(er, —k,y)=
E. 0 0 1| le.
27)
e, cosot,, T"
= |-e, sin(wt,, T," |expi(wt,, —k,y)
e:
The divergence of Eq. (27) is as follows:
EX
div|E | =id k,(sin a)l;fmI:.j"S)eXp (ot — k,y). (28)
E.

One can see from Egs.(27) and (28) that the incident wave propagating from
isotropic space in the Y direction, with the amplitude components e_ and e_, acquires
longitudinal components after crossing a boundary between the isotropic and anisotropic
spaces.

As a consequence of our analysis and consideration of properties of the time tensor,
we rewrite the first two Maxwell equations (Faraday’s and Ampere’s laws) as

rotE + ! 8AB =0
1+7; +iT;" or,,
— (29)
rotH — ! ob =0

s ras 4
1+T; +iT." ot

mm

It is easy to check that the wave given by Eq. (12) is a solution of Egs. (29).

b) Coulomb's law
In the present paper we will consider the Coulomb’s law only in brief. Let us write
out the electric field created by a charge ¢, which is introduced into the space with the

tensor time properties, in the following form:

q q S as
E = r= I1+T +T")r., 30
" odnrg, ! 472'1”380( s TI0 (30)
according to Eq. (21), or
q q S . as
E.: V.= [+T+ZT v, 31
" odnrg, ! 47rr3£o( v Rl D
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according to Eq. (23).

Due to accounting for symmetric part of the time tensor, the electric field strength
caused by the electric charge should be anisotropic in the both cases. However, according
to the duality condition, AS polar second-rank tensors may be rewritten as axial vectors

1 e .
(7, = —Eé‘,y.ﬂj‘” , where ¢, denotes the Levi-Civita pseudo-tensor). Then the existence of
AS part of the time tensor leads to the relations
q as q
E=—""96|T"xr |=- xr], 32
i 27[7‘36‘0 /t./[ ij ./] 271'7‘380[ ] ( )

according to Eq. (30), or

E, :_i2ﬂf—3805”j [T;s xer:—i 2”2380 [Txr], 33)
according to Eq. (31). It is obvious that Eq. (32) describes some kind of vortex, which is
created by electric charges. The rotational component of the electric field does not
represent a potential field, thus describing the action similar to that of the magnetic field.
It is interesting to note that the magnetic monopoles are thought to arise in the early
Universe in the grand unified theories. Most probably, the case of imaginary AS time
tensor (see Eq. (33)) describes a rotation of polarization plane in such a kind of space,
which permits nonzero AS time. This can be readily explained by the fact that the
dielectric permittivity in Eq. (33) is AS and imaginary.

The divergence of the electric induction caused by the point charge in this
anisotropic space can be presented as

L + Ty’ +Tz* | ST + T +T5)
3

5
e;r g;r

divD, = q5(r) +q m -5(r) dxdydz . (34)

Thus, if the charges are randomly distributed, the third Maxwell equation takes the form

divD,('r,) = p('r,) +

TS+ T8 +T5% 2% (T5+T5 +T5) , (35
+J‘”‘p(2ri) Ay » Y 33 S TR 333 dx,dy,dz,
G

5
2 1 2 1
& V—l" r—

o

-]
where 'r is the radius vector of the point where the divergence is calculated and *r the
radius vector of the region with the coordinates

X, =—00++40,), =—00++w, z, =—0++0 . As one can see, Eq. (35) is reduced to the
common Maxwell equation ( divD,('r.)= p('n)),if T, =T, =T #0 or T;=0.
The static polarization of vacuum with the tensorial time may be represented as (see
Eq.26)
b =(&y; —&,0,)E; . (36)
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807;].

It is seen that the vacuum polarization would not vanish (P = E,) even if

i

T)=T,=T;#0 and 7" =0. According to the present analysis, the coefficient K,

which has been introduced via the relation D =¢E =¢,KE in the work [24] (with &

being the dielectric permittivity of the polarized vacuum), appears in its natural way:

goi'
(K)[/' = .

0
A more detailed analysis of the mentioned effect, in particular on the basis of
quantum electrodynamics, will be a subject of forthcoming papers.

Conclusions

We have rewritten the Maxwell equations with consideration of tensor properties of the
time. It has been demonstrated that introduction of the time tensor enables describing the
changes in the velocities of electromagnetic waves in the so-called polarized vacuum, as
well as anisotropy of those velocities. The relations obtained by us could be simply
reduced to the common equations in case if the deviation and the AS part of the time
tensor tend to zero. It has been shown that the Hermitian principle for the dielectric
permittivity tensor follows from stable solutions for the AS part of the time tensor. A
rotation of polarization plane of electromagnetic waves should appear when the space
symmetry is lowered in such a way that the AS part of the time tensor becomes nonzero.
Moreover, the existence of AS part of the time tensor leads to possible appearance of
longitudinal polarization of electromagnetic wave and, according to the modified
Coulomb's law, the electrostatic force should become anisotropic. Real AS parts of the
time tensor can lead to appearance of a vortex-like electric field. The rotational
component of the electric field does not represent potential field, but rather describes
some action, which is similar to that of the magnetic field. At the same time, purely
imaginary AS time tensor most probably describes a rotation of polarization plane in such
a space. We have also shown that the vacuum can become polarized in the space if
anisotropy of the time does not exist. Even time delay caused by the gravitation field or
some other fields could lead to polarization of the vacuum.
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