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Abstract

We revisit the problem of light transmission through a slab of homeotropically
oriented nematic liquid crystal and solve self-consistently a system of coupled
nonlinear equations describing orientation of the nematic director in the slab and
the Maxwell equation for the electric field. We demonstrate that optical
transmission of the slab as a function of input power shows a multistable
hysteresis-like behaviour. We suggest that this multistability can be useful for
creating tunable all-optical switching devices based on the liquid-crystal
infiltration of photonic crystals.
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1. Introduction

Liquid crystals (LCs) play an important role in the modern technology and are used for
numerous applications in electronic imaging, display manufacturing and optoelectronics
[1,2]. A large variety of electro-optical effects that occur in LCs could be employed when
designing photonic devices. For example, a property of LC to change its orientational
structure and the refractive index in the presence of static electric fields suggests one of
the most attractive and practical schemes for tuning photonic bandgap devices [3,4].
Nonlinear optical properties of LCs and multistability of their light transmission are of a
great interest for the future applications of LCs in photonics [5].

Light polarized perpendicular to the LC director changes its orientation provided that
the light intensity exceeds some threshold value [6]. This effect is widely known as a
light-induced Freedericksz transition (LIFT). Its theory has been developed more than
two decades ago in a number of pioneering papers [7-9]. In particular, Zeldovich et al.
[7] have demonstrated that LIFT could generally be treated as a second-order
orientational transition, though hysteresis-like dependences and two thresholds can be
observed in some types of LCs, which concern increasing and decreasing intensities of
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the input light. The results obtained later by Ong [10] have confirmed that LIFT
for MBBA nematics is of the second order and no hysteresis behaviour is observed,
whereas LIFT for PAA nematics is of the first order and a hysteresis-like behaviour, with
two distinct thresholds, should be observed for a single beam at normal incidence.
Although these conclusions have been confirmed to some extent in later experiments
[10], the theories developed earlier have been based on the approximations of geometric
optics and they are approximate by their nature. Similar approximations have been
used later [11] for taking into account a backward wave in the LC film placed in Fabry-
Perot resonator. It has been shown that the threshold of LIFT depends periodically
on the thickness of LC slab. Nonlinear optical properties of nematic LC films placed
into Fabry-Perot interferometer have been studied by Khoo et al. [12]. They
have considered propagation of light polarized under acute angle with respect to the LC
director and experimentally observed a bistability in the output light intensity caused
by a giant nonlinearity of LC films. Cheung ef al. [13] have detected experimentally
the effects of multistability in the similar systems, including the oscillations of the output
light intensity.

In this paper, we revisit this classical problem and solve numerically, for the first
time to our knowledge, a complete set of coupled equations for the nematics and the
propagating electric field. We demonstrate a possibility for optical bistability occurring
after LIFT takes place. This provides a straightforward verification of the earlier results
and also builds a solid background for the studies of more complex photonic structures
that employ orientational nonlinearity of LCs.

First, we consider a general problem of the light transmission through
homeotropically oriented nematic LC and analyze specific conditions for the
multistability and LIFT. Second, we consider this problem self-consistently, by solving
numerically the coupled system of stationary equations for the director orientation and the
Maxwell equations for the electric field. We present our results for two different nematic
LCs, para-azoxyanisole (PAA) and a mixture E7, which have been shown in the previous
theoretical studies [10] to demonstrate quite dissimilar behaviours at the LIFT.

The paper is organized as follows. Sections 2 and 3 present our basic equations and
outline our numerical approach. Section 4 summarizes the numerical results and
compares them for the two nematic LCs. In addition, both the bistability and the
hysteresis-type behaviours of the light transmission are in detail discussed in this section.

Finally, Section 5 concludes the paper.

2. Basic equations

Consider a nematic LC confined between two vertical planes (z=0 and z = L), with the
director initially oriented along the z axis (see Fig. 1). The LC slab interacts with a
normally incident monochromatic electromagnetic wave characterized by the electric
field E(r,?),
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E(r,t) = %[E(r)e‘i“” +E (r)e™ |. (1)

In order to derive basic equations for the nematic director and the electric field, we
write the free energy of LC in the presence of electromagnetic wave in the form [7]

F= [(fa+fo)dv, 2
where
fu =S + 52 ) + 2 eV en’,
1 .
fe = _ggikEiEk, Ey =&,0y +E,NN,.

Here f, is the elastic energy density for the LC, f. the contribution to its free energy
density from the light field, n the nematic director, K, the elastic constants, &, the
dielectric permittivity tensor, while &, =g —&, >0 describes the LC response
anisotropy, with & and &, being respectively the principal components of the &, tensor

parallel and perpendicular to the director.

Fig. 1. Schematic representation of the problem: a slab of LC
is placed between two walls (z=0 and z=L). The n
vector describes orientation of molecules in the slab.

We assume that the electric field outside the LC slab is directed along the x axis
(see Fig. 1) and it causes director reorientation in the xz plane inside the LC slab.
Therefore, all the functions inside the LC slab would depend only on the z coordinate, so
that we may look for spatial distribution of the nematic director in the following form:
n(r)=e sing(z)+e, cosp(z), where @ is the angle between the LC director and the z
axis (see Fig. 1) and e_ and e, the unit vectors of the Cartesian frame.

After minimizing the free energy given by Eq. (2) with respect to the director angle
@, we obtain the stationary equation for the LC director orientation in the presence of
light field:
2 2
(K, sin” @ + K4, cos’ (p)d—f: (Ky; —K,,)sin@cos ¢ a9
dz dz 3)

_ gagugj_ sin 2(0

lor (e, +¢, cos” @)*
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where we have taken into consideration that the electric field inside the LC slab has the
longitudinal component only, E_(z)=—(¢,,/¢,.)E (2).

From the Maxwell equations, one can obtain scalar equation for the x component
of the electric field,

SJ_E‘”

d’E
4k —E, =0, 4)
dz &, +¢g,c08 @

where k=27A/c and A is the wavelength of the incident light. The time-averaged z
component of the Poynting vector, S, =c/(87)E H ;, remains unchanged inside the LC

slab [7,10] and so it could be employed for characterizing different regimes of the
nonlinear transmission of light.

3. Numerical approach
We solve the system of coupled nonlinear equations (3) and (4) in a self-consistent way,

taking the appropriate boundary conditions into account. For the director, we assume a
strong LC anchoring at the boundaries, i.e.

?(0) = 9(z) =0, (%)
whereas for the electric field we consider the reflecting conditions

E(0)=E +E E(L)=E,,. (6)

ref »

Here £, , E ; and E_, denote the amplitudes of the incident, reflected and transmitted

n?

waves, respectively. In all of the above equations we put x=1 for the magnetic
susceptibility and consider that H, = (1/ik)(dE dz) .

The boundary conditions expressed by Egs. (6) imply that two counter-propagating
waves are considered on the left side of the LC slab, the incoming and reflected ones,
whereas only one outgoing wave appears on the right side. Therefore, we first fix the

amplitude of the outgoing wave F,

out ?

in order to solve this nonlinear eigenvalue problem.

This allows us to determine unique values of the incident (£, ) and reflected (£, )

waves.

Eq. (3) for the director is similar to that describing a nonlinear pendulum, with the
fixed boundary conditions given by Eq.(5). This means that we should search for
periodic solutions, with the period 2L . In fact, there exist many periodic solutions of
Eq. (3). First of all, this is a trivial solution ¢(z)=0 that corresponds to unperturbed
orientation of the director and absolute minimum of the free energy given by Eq. (2). The
LIFT occurs when this trivial solution gets unstable for larger values of the input light

intensity and the value of the director angle ¢(z) becomes finite. We find this solution

numerically by using the well-known shooting method [15]. By fixing the amplitude of
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the outgoing wave £, and taking ¢(L)=0 at the right boundary, we find the values of

t
derivative d¢/dz__, such that a vanishing value of the director angle at the left
boundary, @(0)=0, is obtained after integration. After analyzing the nonlinear equation
(3) in the two-dimensional phase space, one can show that the corresponding solution lies
just below the separatrix curve and it has no node between the points z=0 and z =L .

This observation allows us to reduce significantly the parameter region for the required
derivative d@/dz__, values. Then we apply stability analysis for the zero solution,

which gives us the threshold value.

4. Results and discussions

We have solved the nonlinear transmission problem for the parameters of two nematic
LCs, para-azoxyanisole (PAA) and a mixture E7. They are characterized by different
signs of the parameter B=(1-9¢,/(4¢,)—(K;;—K,,)/K;;)/4 appearing in the
geometric optics approximation [7,10], where the sign of B determines the order of the
LIFT. For the PAA, B <0 is found and the LIFT should be of the first order, while we
have B >0 for the LC E7 and the corresponding transition should be of the second order.
Below we will verify these results by applying our self-consistent approach. We take the
following physical parameters: (a) K,, =9.26-107dyn, K, =18-10"dyn, n,=1.595
and n,=1.995 for PAA and (b) K, =11.09-10"dyn, K;;=15.97-10"dyn,
ny, =1.522 and n, =1.746 for E7. A single wavelength (4 =532 nm ) is considered for

both LCs.
In Fig.2 we present our numerical results for the changes in the maximum

orientation angle ¢, of the director as a function of normalized input power //1,.

calculated for the PAA and E7. The threshold power [/, (for instance,
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Fig. 2. Dependence of the maximum deformation angle ¢ . vs. the
normalized input intensity for the two types of LCs, E7 and PAA.
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I, =0.152 MW/cm? for the E7) corresponds to the critical value when the zero solution
becomes unstable. A hysteresis-like dependence of the angle ¢, .. is observed for the

PAA. In the case of LC E7, this dependence exhibits a smooth second-order transition,
without any hysteresis. The dependences represented in Fig. 2 are rather universal. They

are independent of the LC cell thickness L or the refractive index n_ of the surrounding

medium. Yet, in order to be more realistic, one should correct these dependences by the
effect of light absorption in the slab, which is not accounted for in this study.

The light transmission versus the input power for the case of LC E7 is shown in
Fig. 3. It is evident from Fig. 3 that variations in the refractive index of the surrounding

medium 7, cause transmission oscillations with respect to the incident power, in

accordance with the Fabry-Perot phenomenon. Depending on the LC cell thickness, these
oscillations may lead to the appearance of optical multistability. This is similar to that
peculiar to a nonlinear resonator and is determined by the resonator properties of LC slab
of a finite thickness [14]. Here the reflected wave plays an essential role, as it has been
shown in Ref. [13] by taking a second counter-propagating wave into account. In frame
of our approach, both waves have been considered from the very beginning, when simply
solving the full set of the Maxwell equations with the scattering boundary conditions. As
expected, we observe variations of the threshold value /,. with respect to the geometrical
optics approximation [10].

Thus, the self-consistent approach gives the same results as obtained in framework
of the geometric optics for LIFT in nematic LCs. Nevertheless, our approach does not
provide a complete solution for the problem. Indeed, we consider the time-averaged
problem though, as shown earlier [16,17], taking into account the LC dynamics would be
also important, because both the transverse and azimuthal instabilities may take place.
Moreover, our discussion is based on the assumption that the incident laser light is

Fig. 3. Light transmission
through a slab of LC E7
(the thickness L =10um)

for the two refractive
indices of the surrounding

media, n, =1 and

n,=n,=./&, . Optical

mulitstability is observed
in the former case and
the latter case
corresponds to the
condition of perfectly
matched refractive
indices, when the
reflection is absent.
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described by a plane wave. In reality, lasers yield focused beams with the sizes
comparable to the slab thickness, and this might lead to the appearance of transverse
effects. As a consequence, our approach may be considered as a first step towards a clear
understanding of the problem. It can be further generalized as to accounting for all of
these phenomena, which will shed light on the entire process of LIFTs.

5. Conclusions

We have analyzed the transmission of light through a slab of homeotropically oriented
nematic LC and have studied in detail both the optical multistability and LIFT. We have
solved numerically the stationary version of the coupled equations for the nematic
director and the propagating electric field, taking specific parameters of two different LCs
(PAA and E7) as examples. It is shown that this self-consistent approach confirms the
main results obtained earlier in the framework of geometric optics approximation.

We have also demonstrated that the resonator effect of the LC slab associated with
light reflection from the two boundaries gives a significant effect and, in particular, it is
responsible for the observed periodic dependence of the threshold values and the multi-
stability of transmitted light on the slab thickness. We expect that these features may be
useful while studying periodic photonic structures with the holes infiltrated by LCs [18].
Multiple reflections and nonlinear LIFT should be properly taken into account in the
latter case, in order to develop tunable all-optical switching devices based on the specific
nonlinear and tunable properties of LCs.

Acknowledgements

This work has been supported by the Australian Research Council. The authors thank
E. Brasselet, B. Zeldovich, M. Karpierz and 1. C. Khoo for useful suggestions.

References

1. Blinov L.M. and Chigrinov V.G. Electro-Optics Effects in Liquid Crystal Materials.
New York: Springer (1994).

2. Khoo I.C. Liquid Crystals: Physical Properties and Optical Phenomena. New York:
Wiley & Sons (1994).

3. Busch K and John S, 1999. Liquid-crystal photonic-band-gap materials: The tunable
electromagnetic vacuum. Phys. Rev. Lett. 83: 967-970.

4. Yoshino K, Shimoda Y, Kawagishi K, Nakayama K and Ozaki M, 1999.
Temperature tuning of the stop band in transmission spectra of liquid-crystal
infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett. 75: 932-934.

5. Simoni F. Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed
Liquid Crystals. New Jersey: World Scientific (1997).

6. Zolotko A S, Kitaeva V F, Kroo N, Sobolev N N and Csillag L, 1980. The effect of
an optical field on the nematic phase of the liquid crystal OCBP. JETP Lett. 32: 158—
162.

Ukr. J. Phys. Opt. 2007, V8, Ne2 67



Miroshnichenko Andrey E. et al

10.

1.

12.

13.

14.

15.

16.

17.

18.

Zel'dovich BYa, Tabiryan N V and Chilingaryan Yu S, 1981. Freedericksz transition
induced by light fields. JETP 81: 72-83.

Khoo I C, 1981. Optically induced molecular reorientation and third order nonlinear
processes in nematic liquid crystals. Phys. Rev. A 23: 2077-2081.

Durbin S D, Arakelian SM and Shen YR, 1981. Optical-Field-Induced
Birefringence and Freedericksz Transition in a Nematic Liquid Crystal. Phys. Rev.
Lett. 47: 1411-1414.

Ong H L, 1983. Optically induced Freedericksz transition and bistability in a nematic
liquid crystal. Phys. Rev. A 28: 2393-2407.

Hakopyan R S, Tabiryan N V and Zeldovich B Ya, 1983. Freedericksz transition in a
nematic liquid crystal under the action of the field of the standing light wave. Opt.
Commun. 46: 249-252.

Khoo I C, Hou J Y, Normandin R and So VCY, 1983. Theory and experiment on
optical bistability in a Fabry-Perot interferometer with an intracavity nematic liquid-
crystal film. Phys. Rev. A 27: 3251-3257.

Cheung M-M, Durbin SD and Shen Y R, 1983. Optical bistability and self-
oscillation of a nonlinear Fabry-Perot interferometer filled with a nematic-liquid-
crystal film. Opt. Lett. 8: 39-41.

Marquis F and Meystre P, 1987. Optical bistability near the optical Freedericksz
transition. Opt. Commun. 62: 409—412.

Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. Numerical Recipes
in C++. Cambridge: Cambridge University Press Cambridge (2002).

Abbate G, Maddalena P, Marrucci L, Saetta L. and Santamato E, 1991. Mutistability
and nonlinear dynamics of the optical Freedericksz transition in homeotropically
aligned nematics. J. Physique II 1: 543-557.

Ilyina V, Cox SJ and Sluckin T J, 2006. A computational approach to the optical
Freedericksz transition. Opt. Communications 260: 474—480.

Miroshnichenko A E, Pinkevych I and Kivshar YuS, 2006. Tunable all-optical
switching in periodic structures with liquid-crystal defects. Opt. Express 14: 2839—
2844.

68

Ukr. J. Phys. Opt. 2007, V8, Ne2



