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Abstract

We derive the expressions for / =1 modes of weakly guiding twisted elliptical
fibres and the polarization corrections to the scalar propagation constant of these
modes in the framework of Jones matrix formalism in the reflectionless
approximation. Using these results, we demonstrate that the topological
Pancharatnam’s phase in the twisted elliptical fibre appears due to spin-orbit
coupling in fibres and is absent in the scalar approximation.
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1. Introduction

The notion of topological phase has been introduced in physics in 1984 by Berry to
describe the phase accompanying a cyclic adiabatic evolution of quantum systems in the
parameter space [1]. It has been demonstrated later on that there exist two different types
of topological phases in optics. One of them is manifested, for instance, as a rotation of
polarization plane of linearly polarized light upon its propagation in a coiled optical fibre
[2—6]. This phase is known to be associated with adiabatic variation of the propagation
direction of photon and is proportional to the solid angle subtended by the trajectory of
wave vector in the momentum space [3]. On the contrary, the other type of topological
phase accompanies the rectilinear propagation of light at a cyclic change of its
polarization state. The existence of such a phase has been demonstrated by Pancharatnam
[7] and its topological nature has been proved by Berry [8]. It is well-known that
Pancharatnam-Berry’s phase (or, simpler, Pancharatnam’s phase abbreviated hereafter as
PP) is proportional to the solid angle subtended by the trajectory of polarization on the
Poincare” sphere. Thus, in this case the parameter space is formed by the Stokes
parameters. To detect and measure PP, there has been suggested a number of optical
systems providing cyclic evolution of the polarization state of light (see, for example, [9—
11]). The authors [12] demonstrate the appearance of such the phase in a medium with
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Kerr nonlinearity, which provides a cyclic rotation of elliptically polarized beam. Another
optical system, which seems to be quite capable of observing the PP, is twisted elliptical
optical fibres.

The fibres mentioned above represent a separate class of perturbed fibres with
periodical perturbation of their cross-section. Such perturbations can be created while
manufacturing fibres and are technologically achieved either by spinning them [13] or
with some other methods [14, 15]. The problem of properties of single-mode twisted
fibres has been for decades evoking a steady amount of interest of both experimenters and
theoreticians. Since its early appearance in the literature [16], great attention has been
paid to study the properties of twisted and spun fibres in the presence of a regular twist of
birefringence axes [17-19]. One of the main results of these investigations has been
establishing the fact that the mode structure of regularly twisted single-mode fibres is
presented by the so-called elliptic screw polarization modes. Recent surge of interest in
this problem is related to a randomly varying elliptical birefringence [20-23]. Especial
attention is being paid to the studies of influence of a spinning function on polarization
mode dispersion [24-26]. One of the most important results of these researches is the
established fact that spinning fibres reveal reduced polarization mode dispersion.
However, the studies mentioned above have been mostly concerned with the fundamental
mode behaviour. The problem of the propagation of higher-order modes (/>1) in the
twisted elliptical fibres, with accounting for vectorial nature of the electromagnetic field,
has been solved in [27] in the framework of perturbation theory applied to the vector
wave equation. However, the question of the topological phase of higher-order modes has
not been considered in this work.

The main purposes of the present work are to establish the expression for PP in the
case of /=1 modes and to show that this phase is determined only by the relation
between the twist rate and some constant induced by a spin-orbit interaction. Actually, we
would like to bring attention to the fact that certain geometric phases in fibre optics are
closely related with this specific interaction. We also provide another example of
application of the Jones matrix formalism [28] to the problem of twisted fibres, which
could serve as an alternative to the rigorous method for solving the vector wave equation
for periodically perturbed fibres [27].

2. Generalized Jones matrices for /=1 modes

Let us consider a weakly guiding twisted elliptical optical fibre. To introduce twisting, let
us suppose that the principal axis of elliptic generatrix, which forms the elliptical fibre,
uniformly changes its direction in the transverse plane, so that the inclination angle ‘¥
increases linearly with z coordinate of the cross-section (see Fig. 1): W =2zz/H , where

H is the pitch parameter.
As is known, the most precise classical description of monochromatic light

propagating in a medium with the refractive index n(7) is provided by the vector wave
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equation, which can be easily derived from the Maxwell equations [29]:
(?2 +n (x,y,z)k2 )E(x,y,z) = —@(E(x,y,z) -Vinn® (x,y,z)) , )
where V = (8/ ox, 8/ oy, 8/ 82), k=2x/A, A is the light wavelength and E the electric

field. Usually, the refractive index in fibre optics is given by

n’(x,y,z)=n.,(1-20f(x,y,2)) , 2)

2 2

where A :(nco -ny

) / 2nf ., denotes the height of the refractive index profile, and #,, and

n, are the values of the refractive index in the core and cladding, respectively. The
profile function f (x,y,z) determines the refractive index distribution. For instance, in
the case of straight ideal fibre this function is axially symmetric ( f' (x, y,z): f (r) , with 7

being the distance from the fibre axis). The term in the r.h.s. of Eq. (1) is conventionally
called as the gradient term. It is evident that twisting of the fibre induces a dependence of
refractive index distribution on the z coordinate. It also results in the coupling between
the longitudinal and transverse components of the electric field vector due to the gradient
term. Exactly, this fact brings about a remarkable difference in the propagation of light in
straight and twisted fibres. However, it is possible to show that one can disregard such the
coupling in a wide area of pitch values H . Indeed, the scalar product in the r.h.s. of

Eq. (1) could be written as E,V,g + E,V,g, where V, = (6/ox,0/0y), g=Inn’(x,y,z)
and V, = 0/0z. Here, and throughout the remainder of the text, the subscript # stands for

transverse part of a vector. The following estimate takes place for weakly guiding fibres

E 2 . . . .
[29]: E‘oc—<<1, where 7, is the core radius. Since the scales of refractive index
t "

variations are 7, and H respectively for the transverse and z directions, one has the

following estimates for the derivatives: W, glecA/r,and V_goc 5 A/H , with & being

the parameter related to the degree of ellipticity. Therefore, one can disregard the

coupling between E. and E, at H >> A0, i.e., for any reasonable value of the pitch.

14
X
sy

X
Fig. 1. Model of twisted elliptical optical fibre.
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This enables us to write a closed equation in E, :
(62 +n’ (x,y,z)k2 )E,(x,y,z) =-V, (E,(x,y,z) . ?l Inn’ (x,y,z)) . 3)

In the absence of vector term in the r.h.s., Eq. (3) is similar to the equation for
electromagnetic field in a cholesteric liquid crystal. This allows us to use the ideas of
Jones matrix formalism [28] when solving Eq. (3). According to the approach, one has to
divide the fibre section between z=0 and z= H cross-sections into N segments of the

same length Az = H/N and consider the evolution of the field Et through the obtained

stack of segments, assuming that the orientation of anisotropy axis within each segment is
fixed. In what follows, we will consider only strongly elliptical fibres, in which the
ellipticity-induced coupling is much greater than the spin-orbit interaction. As is known
[29,30], the modes of such fibres are represented by linearly polarized modes. At /=1
these modes can be written as

1~ R =[50

cos ¢

O ) ORI R T

sin @

“4)

where index [ stands for the basis of linear polarizations (

Et>:(§;j) and R=r/r, .

The radial function F, (R) satisfies the well-known equation [29]

7 10 5, I 72
{a?JrEa_RJrkn (R)—F}E(RF@F/(R)’ )

where ,E is the scalar propagation constant and / an integer. The polarization corrections

AP, to the propagation constant ﬁ (B = /? + Ap;) for the modes referred to in Eq. (4)
have the following form [30]:

1 1
AB, zﬁ(|Dl|+0.5Al), AB, zz_ﬁ(_|Dl|+0’5Al)’ .
AB zi(|D|+o.5A +B), AB zi(—|D|+o.5A +B), ©
3 25’ 1 1 1 4 2ﬁ~ 1 1 1
A ' A '
where  one  has 4 =7(F1F1 ‘FIZ)RZI’ By =E(F‘2+F'F‘ )R:l’

o0 2 o0
D, = 52 j REF 5 GR and 0 = J.RFIQ(R)dR for the step-index fibres, in which
O R 0

the profile function is f(r)=6(R-1) (with @ being the unit step) [30].
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We will describe the field in each segment by the state vector |t//> =(a,,a,,a;,qa,),

so that |1//> = Za,. |z> and the decomposition is carried out into the modes of Eq. (4). Con-

4
i=1

sider two adjacent segments, whose anisotropy axes make an angle ¢,. In the

reflectionless approximation, the relation between the vectors ‘<D> and ‘©'> for the field
state in these segments is found from the continuity condition for tangential components
of Et at the interface: Etl (17,) = E,z (ﬁ), where 7 is the transverse component of 7 .
This connection has the form

I1+cos2¢p, —1+cos2¢, —sin2gp, sin2¢,

|CD'> 1| —1+cos2¢, 1+cos2¢p, —sin2gp, sin2g, |q)>
2 sin2¢, sin2¢, I+cos2¢, 1-cos2gp,

9{(%) |CD>' ™)
—sin2¢, —sin2¢, 1-cos2¢, 1+cos2gp,

This  matrix iR(go) has  the following  composition  property:
9?((0, )‘.R((oz ) = ER((/), + (/)2) . Each segment Az acts upon the input field as a transforming
element. In the laboratory frame, the field |x//’> at the output segment end
can be found by the input field ‘1//> w)y=R"(p,) 7 (Az)R (9, )|w), where
7 =diag(exp(iﬂlAz), exp(if,Az), exp(if,Az), exp(iﬂ4Az)) is the phase matrix and 'diag'
stands for diagonal matrix. The fibre section of length H transforms the input field ‘z,z/>

according to
)y =7 (1) |v)=

N
_~ . ®)
P PE}O {diag(exp(i%j ,exp [i%), exp(iﬁj, exp(i%nﬂ? (%H |W> )

where I', = A H . The following is worth remarking: though the formalism presented
above is a natural generalization of the Jones matrix method, unlike the Jones matrices,

the R ones operate in the four-dimensional modal subspace built on the eigenmodes ‘1> ,

that belong to the same eigenvalue ,5, of the scalar wave equation. A general scheme of

the Jones formalism, nevertheless, remains intact.
3. The /=1 modes of twisted elliptical fibres
Let us define a mode of the twisted fibre as a state ‘1//> , which is transformed by the fibre
section H into the state ,u‘ 1//> , where x is some numerical factor. Evidently, the vector

‘1//> is eigenvector of the transformation operatorf : f v (H )|(//> = ,u|y/> , where 4 is the
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corresponding eigenvalue. Within a phase factor, the matrix 7}, (H) has an obvious limit:
il 0 27 27

Y

A . A 0 r, 2z 2 n

To lim|1+— | =exp "2 ) T =exp4d. )
N—o0 N 2z 2z il 0

2z 2z 0 il
In order to find the eigenvectors and the spectrum of the matrix f , it is sufficient to solve
this problem for the operator A . While the eigenvectors of T and A should coincide,
the eigenvalue y of A should be related with the eigenvalue g through u =expy . Since
it has turned out to be impossible to provide compact analytical expressions for the

eigenvectors of A at arbitrary relations among its elements, we study here only the case
of relatively weak twist (I', >>2x), which is of practical importance. Using the

perturbation theory with degeneracy [31], one can derive the expressions for the modes of
weakly twisted elliptical fibres. In the local linear basis they look like
|l//|>L = sin9|l>+icos¢9|3> , |l/l3>L = sin€|2>—icosﬁ|4> R

10
|l//2>,l:cose|1>—isinl9|3>, |t//4>,A:cos¢9|2>+isin6|4>, (10)

where cot26’:—|l§l|/47r, 7/4<0<7z/2 and X = XH/2f, X =D,, 4, or B;. It should

be emphasized that the angle ¢, which the mode |l> depends on, is defined in the local

frame of reference. The polarization corrections to the propagation constants of the modes
referred to in Eq. (10) read as

1 [~ 4 +B 1 . A +B
AB ,=—|D|+2—LF=E}, AB,,=—<-|D|+1—Lx=¢}, 11
G VR AR an

where = =,/(5 /2)* +4x” . As follows from the definition of @, there are two limiting

cases of the weak twisting regime.

At 27 <<‘l~31 , Egs. (10), (11) give rise to the following expressions for the modes
and polarization corrections:
(1~ A 47’
L A D!
(i~ A4 ~ 47°
L |Dl|+71+31+41j, v), ~[3):
1 4, 4r (12
= B ), <12
1 ~ 2
Aﬂ4_; —|Dl|+—+Bl+f] |V/4>LN|4>
1
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The local fibre modes in this case almost coincide with those of the straight elliptical
fibre, and the effect of twisting manifest itself only through the appearance of corrections
to the propagation constant. It should be remembered that the mode fields adiabatically
trace the direction of the anisotropy axis.

In the case of intermediate twist (‘Dl‘ >> 27 >> El) one has

A4 +B

””j’ lv), =1y 2il3),

AB, = %UDI | +

(13)

=Dl w2a] ), -7 4.

The fields of the modes (13) could be written in some other form: e.g.,

1 .
|1//1> , OCE(’”)(.]COS% etc. One can also demonstrate that in the laboratory frame the
1

mode field in the z cross-section is obtained from the initial field |1,//i> ; atz=0as
27z zZ o~ -
@)= (22 oo 2, =7 G (14)

4. Pancharatnam’s phase in twisted elliptical fibres

It is easily seen that, in the local rotating frame of reference, the modes given by Egs. (10)
have the same form in an arbitrary cross-section of the twisted elliptical fibre. Hence, the
vector of polarization at any point in the cross-section returns to its original state as light
has passed the period H , thus making a complete cycle. According to the general theory
of PP [8], this cyclic evolution of polarization state has to be accompanied by the

appearance of purely geometric phase y,. As is well-known, this phase is proportional to

the solid angle Q) subtended by the trajectory of the vector of polarization on the
Poincare” sphere:
1
=——Q. 15
Vp 5 (15)
To calculate €, one has to study evolution of the light polarization. Since the field
in weakly guiding fibres is almost transverse, one can describe it with the Stokes

parameters:

*
€€y,

Consider application of these formulae to the mode |y, ) 1, - First, it is necessary to

* * * * k . * %
Sy =e.e +eye,, S| =eey Sy =eyey +eye,, S3=—i(exe, —eyey). (16)

y ooTxTye

write this mode in the laboratory frame of reference, i.e., that corresponds to z=0. Using
Eq. (14), one can obtain the relation

—cos@sing, —isinf cos @,
|'//2 (Z)>L :COS(¢_¢O)( cos¢9cos%o—isirlé’sin(poojF1 (R)’ {17
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where @, :(27r/H )z. Obviously, the mode |1,//2 > ; is completely polarized and has a

uniform polarization distribution over the cross-section. The normalized Stokes
parameters at the point (7,¢) in the cross-section, in which the principal ellipse axis is

inclined at the angle ¢, is given by
S, =—cos260cos2¢,, S, =—cos20sin2¢,, S; =sin26, S, =1. (18)
Trivial analysis of Eqgs. (18) shows that the evolution of polarization state of the

mode |1//2 >L in the case of arbitrary twisting (7z/4<6<7x/2) is represented by a circle

trajectory on the Poincare” sphere and the position of this trajectory is determined by &

(see Fig. 2). The trajectory degenerates to the north pole at 6 =7/4, thus describing the
right-handed circular polarization, while at @ = /2 the mode is x -polarized. Apparently,

no evolution of polarization vector takes place in these cases and the PP should be equal
to zero.

At the same time, the solid angle can be found as £~2=27z(1—cos;() at

w/4<@<x/2, where y is defined in Fig. 2. Taking the relation cosy =S, and

Eqgs. (18) into account, one readily obtains the desired expression for the solid angle:

Q=27(1-sin20)=2x L (19)

1+ (El / 47r)2
To get the final expression for the topological phase yp, one should notice that the

vector S (Sl Y ,S3) traces twice the depicted trajectory provided that the light has passed

the period H . This fact follows immediately from Eq. (17) and means that the solid
angle subtended by the total trajectory is obtained by doubling the solid angle given by
Eq. (19). In this way, on the basis of Egs. (15) and (19) we get

V= 2;{(1 +(B /an) )1/2 —1). (20)

In what follows, we will not take into consideration an unobservable phase 27 in

7 p and so will use the following expression for the PP:

Vp =27r/1/1+(l~?l/47z)2 . 21)

Let us now calculate the total phase increment A®, = 8,H for the cycle H for the

mode |1,//2 > ; - Using Eq. (11), one can readily obtain

AD, =y + 271+ (1§1/47r)2 - B2, (22)
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Pancharatnam’s phase ...

4 = ~ 1/~ ~ . .
where y) = fH + |D,| + —(Al + ZBI) denotes the phase increment, which would have taken
2

place in a straight elliptical fibre of the length H [30]. It is easily seen that twisting-
induced second and third terms in Eq. (22) do not coincide with the pure topological
phase (21). This is explained by the fact that the twisting-induced phase correction in
Eq. (22) is actually composed of two different types of phase: the PP and the phase
induced by direct interaction between the light and twisted birefringent medium. Such a
situation is typical for a gyrotropic medium, where the state of polarization accomplishes
. 1
a complete cycle [12]. If we present the mode |/, ), in the form |y, ) cosqp(_ )Fl ()
’ &
(with ¢ =cot@ being the ellipticity of the polarization ellipse), the total phase A®, can
be rewritten with Egs. (21) and (22) as

AD, =y +71 +7p, (23)
tw ? & . w
where 7)) =27z 5(1+32) and y, =4r ek In this way, both the PP and the phase y,

are determined only by degree of ellipticity & of the mode. This result is in a good
agreement with the corresponding statements of the work [12].

Fig. 2. Evolution of polarization state on the Poincare” sphere.

However, one should emphasize that & cannot acquire arbitrary values in the case of
twisted elliptical fibre, as in the work [12]. In our case, it is rather determined by the
material constants of fibre. In a sense, the topological PP depends therefore not only on
the geometric factors, as the Berry’s phase in the coiled fibre does, but also on the
material parameters of twisted fibres through the initial position of the point on the
Poincare” sphere. It is also interesting to note that for strongly elliptical fibres

(|Dl| >>|Al|,|Bl|,27[ﬂ~ /H ), which are a subject of our consideration, neither the phase

}/;,w , nor the PP depend on the degree of ellipticity of the fibre cross-section. They are
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determined only by the relation between the twisting rate and the spin-orbit interaction
constants. Moreover, as follows from Eq. (21), the PP vanishes whenever the spin-orbit
interaction tends to zero or is suppressed by the twisting. This is caused by the fact that in
this limiting case the modes become circularly polarized (see Egs. (13)) and no evolution
of the polarization vector on the Poincare’” sphere takes place. This indicates some
connection between the geometrical phase and the spin-orbit interaction. As has been
pointed out in [32], the phase of higher-order modes in parabolic-index fibres can be
attributed to the influence of Berry’s phase associated with the helix-like motion of skew
rays, which form those modes in the geometric optics approximation. The polarization
correction to the scalar propagation constant has been shown in [33] to appear as a result
of topological phase arising due to a helical form of the Poynting vector trajectories.
Since such the corrections have been treated as manifestation of the spin-orbit interaction,
there is a relation between this interaction and the geometrical phase [33]. Our example
also demonstrates that a relation exists between the geometrical PP and the spin-orbit
coupling. Being understood literally, Eq. (21) conveys just a dependence of the PP on the
constant B, induced by spin-orbit coupling.

Conclusion

We have shown in the present paper that, in order to recognize the presence of the
topological phase for /=1 modes in the twisted elliptical fibres, it is necessary to take into
account the gradient term in the vector wave equation. Otherwise, in the scalar
approximation one would not be able to obtain the correct expression for the PP at
arbitrary values of the pitch.
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