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Abstract

Singularities of Poynting vector are considered for scalar and vector fields. Behaviour of
the averaged and instantaneous components is analyzed. Relationships between the
Poynting singularities and conventional optical ones and connection with the other special
sets of electromagnetic fields are established. Elementary topological regularities and
reactions are formulated. The results of computer simulations are presented.
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1. Introduction

Propagation of coherent radiation through
inhomogeneous media with random fluctuations
of local optical characteristics results in forming
optical waves characterized by random temporal
and spatial distributions of their parameters,
such as the intensity, phase and, in a general
case, the state of polarization. The fields formed
in such a way are referred to as speckle-fields
[1,2]. Since the parameters of speckle-fields are
described by complex functions of general form,
one can expect that diverse peculiarities
(singularities and stationary points) are inherent
to them, both point-like and extended ones.
Under
singularities are divided into the following

paraxial ~ approximation,  optical
groups:

1. The optical (or phase) vortices in the sca-
lar fields (the points with a zero intensity) [3-7].
The field phase is indeterminate in these points.

2. The polarization singularities: C -points
(field points with a circular polarization) and s -
contours (closed lines where the field is linearly

polarized) in the vector fields [3,8-13]. The
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polarization azimuth « and the vibration phase
@, (which defines the field vector position with

respect to the major axis of the polarization
ellipse) are singular in the C-points. The
direction of the field vector rotation is
indeterminate along the s -contours.

Both the vortices of scalar fields and the
C -points of vector fields are characterized by
the two topological parameters:

1. The topological charge [14]

1
S=—2ddf, 1
oy (1)
where f means the field phase @ for the vor-

tex and the vibration phase @, for the C - point.

The integration is performed along a small circle
that surrounds the singular point, in the counter-
clockwise direction. The stable field structures
are characterized by the vortex charge S==+1
[14] and the C - point charge S, ==+1/2 [12].

2. The topological index (the so-called
Poincare index) [14], which is calculated in the
following way. Under circumference (clockwise
or counter-clockwise) of singular point, one
determines the direction of rotation of the lines
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associated with the quantity under interest (to
say, equi-phase lines in the scalar fields). If the
rotation direction for these lines coincides with
the circumference direction, then one prescribes
the sign “+” to the index. Contrary, if the
direction of the line rotation is opposite to the
circumference direction, then the sign “— is
index. The

(modulus) of the Poincare index is equal to the

prescribed to the magnitude
number of full rotations of the lines calculated
for the closed loop.

The positive and negative vortices are
characterized by the same Poincare index
N = +1, while we have N =-1 for the saddle
point. Both the phase extrema and the vortices
[14]. The

Poincare index /. for the C - point (further on —

have the Poincare index N =+1

simply the C - point index) is equal to +1/2
[3]. It is calculated from the rotation direction of
the polarization ellipse axes surrounding the C -
point. We shall call the C -points with positive
(or negative) indices as positive (or negative)
C -points. As shown in [12],

I.=hS,, )

where A==l is the handedness factor that
defines the direction of rotation of the field
vector (i.e., the right or left polarization) in the
analyzed area.

The singularities and stationary points are
interconnected in the form of peculiar nets [14-
19]. These nets, like field skeletons, constitute
the field structure, and the information on the
characteristics of these sets enables predicting
behaviour of the field at any point, at least qua-
litatively. At the same time, the field within the
area of optical singularity is absolutely smooth
and includes no discontinuities, strictly obeying
the Maxwell equations, etc. For example,
indeterminacy of the phase at the centre of phase
vortex is, generally speaking, meaningless,
while the corresponding amplitude is zero.

Similar considerations are valid for the
polarization singularities, viz. the s-contours and
the C - points [3]. Indeed, whereas the rotation
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of axes of the polarization ellipses at some
distance from the C-point characterizes a
difference in polarization characteristics of the
field, the ellipses in the nearest vicinity of the
singularity (C - point) differ negligibly from a
circle (see Fig. 1) and the very notions of the
azimuth and vibration phase, as well as a notion
of the phase at the vortex centre, are illegible. In
other words, the parameters such as the
vibration phase and the azimuth are
“unnecessary” for description of the field at the
C - point, and the rotation direction of the field
vector turns out to be “superfluous”
characteristic for the points of the s-contour.
Besides, temporal behaviour of the field vector
at the C-point (or the s-contour) and close to
these elements of the field is almost the same.
Conventional optical measurements would not
provide discrimination between the points
belonging to a singular set and the points lying
in the nearest vicinity of this set. These areas are
schematically depicted in Fig. 1 respectively as
regions 4 and B. Moreover, optical singularities
could only be detected by using indirect
interferometric techniques or analyzing the
fields resulted from superposition of a singular
structure under interest with any reference field

[6,20-22].

i)
polarization
@

S-contour

Fig. 1. Behaviour of polarization characte-
ristics in immediate proximity to polariza-
tion singularities.
It seems that the above considerations
should lead to obvious conclusion that the only
reason for studies of optical singularities would
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be related to their role in the formation of
structure of light fields, both scalar and vector
ones. On the other hand, the presence of
singularity in any field parameter unavoidably
gives rise to some physical peculiarities of that
field in its vicinity. Then a question arises: what
is a physical manifestation of optical
singularities or, in other words, which is a
specific behaviour of physical system under the
influence of electromagnetic wave?

It is known that the specific behaviour of
the physical system in the case of scalar fields is
associated with the orbital angular momentum
of electromagnetic field existing in the vicinity
of optical vortex [23]. Such the momentum
arises due to a specific (helicoidal) phase surface
in the vicinity of the vortex and, generally
speaking, due to peculiar temporal behaviour of
the field. In other words, physical manifestation
of the scalar singularity is reflected in peculiar
temporal behaviour of the electromagnetic field
components. In the end, polarization
singularities must also be considered as tempo-
ral peculiarities of the field: the polarization
azimuth, the vibration phase and the sense of
rotation of the field vector determine both the
spatial and temporal behaviour of the field. It is
clear that physical manifestations of the vector
singularities should be linked to a temporal
behaviour of the field, which, after all, is
reduced to a specific magnitude of the angular
momentum of electromagnetic field in the
vicinity of those singularities, as well as to some
behaviour of this characteristic in the mentioned
area, which is different from that inherent to the
other areas of the field.

It is common knowledge (see, e.g., [23,
24]) that a ponderomotive effect of electromag-
netic wave on a physical system is associated
with the Poynting vector. In any case, spatial
distribution of the parameters of this vector,
such as its magnitude and orientation, is one of
the main factors determining mechanical in-
fluence of the wave on that system. Besides, the

characteristics of the Poynting vector are
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directly related to the angular momentum (see
[24]). Naturally, the characteristics of the
Poynting vector components for the fields of
general form (including the modulus and
orientation of its transversal component) can be
considered as some spatially distributed
parameters of that field. In general, these
distributions  would possess singularities.
Similarly to the common optical singularities,
the Poynting vector singularities can be
obviously connected into nets, which must
determine, at least in a qualitative manner,
behaviour of the Poynting vector anywhere. In
other words, they must form a skeleton of the
field and determine the regularities governing
spatial distributions of the field parameters.
Similarly to the distributions of the phase
and intensity or the polarization and intensity
[17,18,25,26]), the

characteristics of such the singular sets and the

considered above (see

behaviour of the Poynting vector are expected to
be associated with the characteristics of nets of
the common singularities.

Taking into account the above reasoning,
one can conclude that the analysis of the
Poynting vector singularities and establishing
the corresponding topological regularities are
highly relevant problems. In addition, the
applied aspects of this consideration are strictly
linked to research and development of so-called
optical tweezers representing one of urgent
topics in the modern optics (see, e.g., [27]).

2. General assumptions. Components of
the Poynting vector

Let us perform our analysis in the paraxial
approximation. In contrast to the traditional
approach [23,28], we will consider not only the
time-averaged Poynting vector, but also the
instantaneous one. The following reasons justify
such the consideration:

1. Temporal averaging has a sense for the
optical waves alone, because of too rapid
temporal changes of fields. Concerning the

electromagnetic waves of radio frequency
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domain, the oscillation period is often
comparable with the relaxation time of physical
systems. In this case, the influence of the wave
on the system is determined by the behaviour of
non-averaged Poynting vector or, at least, by the
behaviour of this vector averaged over much
smaller time interval of . Similarly, the concept
of the Nye disclination is a fundamental notion
for radio waves, which loses its fruitfulness in
optics [3,11].

2. Let us note also that the consideration of
temporal behaviour of the Poynting vector
components provides additional information
necessary for deeper understanding of the
processes leading to formation of the averaged
Poynting vector.

Let =z

prevailing direction of the

axis be coinciding with the
wave energy
propagation. The orientation of x and y axes is
not relevant and may be specified arbitrary. It
can be shown [29,30] that the following
relations for the Poynting vector components are

valid under the paraxial approximation:

C
P~—{ET -ET
47[/({ x72 y l}

X

c
P~—{ET+ET} , 3
472'](1 yo2 X I} ( )

v

P~ (E+E)
T Arx .

where

ob,  ob, 1 o4, 1 o4,
T=E —*-F )

X - ) + n n
T oy 7o A, 0y x; A4, &x »g 4

o, 0D, 1 o4, 1 04,
T,=E, +E, +——E +——FE
Toox oy A, ox o Ay oy vy
and
E, = A cos(at + D, - kz)
E . =Asin(af +®, - kz)- (5)
"2

Here A; and @; are respectively the
amplitudes and the phases of the electric field

components, ¢ the velocity of light, £ = 27” the

wave number, @ the circular frequency of

oscillation and i,/ =x,y. It follows from Egs.
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(3)(5) that the Poynting vector components in
the paraxial approximation can be represented as
functions determined by the x and y components
alone. Just these equations and their versions
will be basic in our further analysis.

3. Singularities of Poynting vector in
scalar fields

Let us specify at first the notion of a scalar field.
As arule, one considers any uniformly polarized
field as a scalar one, irrespective of the type of
its polarization [3,6]. Hereinafter, we reduce the
notion of the scalar field to linearly polarized
one, whereas behaviour of the Poynting vector
for elliptically polarized fields can be very
sophisticated. In part, elliptically polarized
waves so-called

possess  a spin  angular

momentum [24].

3.1. Instantaneous singularities of scalar
fields

The basic scalar equations for the wave
polarized along the y axis (here a choice of the

axis is not relevant) have the following form:

P ~~—ET,
47k
C
P ~-——FT, 6
g gk ©)
P~ P
4
od 1 o4
L=E—+——
Oy 5)
o0 1 04
T,=E—+——
Oox ox =
(7
E = Acos(awt + O —kz)
E. = Asin(at +® —kz)- (®)

2
It follows from Eqgs. (6)~(8) that the
singularities of the Poynting vector could arise
in the two cases:
(/) all of the three components vanish
simultaneously; this case corresponds to

appearance of disclination;

Ukr. J. Phys. Opt. 2006, V7, Ne3



Singularities of Poynting Vector and the Structure of Optical Fields

Off st

Fig. 2. Rotation of edge disclination in the vicinity of isotropic vortex: a — intensity distribution for an
isotropic vortex and b-d — instantaneous distributions of the modulus of transversal Poynting vector
component for different moments, which determines the position of disclination. The temporal step
separating figures b-c is 1/12 of the oscillation period.

(if) only the transversal

vanishes; this corresponds to simultaneous

component

vanishing of 7} and 7. Really, orientation of the
transversal component of the Poynting vector
(its azimuth being 6 = arctan(Py / Px)) is then

indeterminate.

Thus, the appearance of singularity of the
Poynting vector for the case when the three
components vanish simultaneously requires
more precise definition of the disclination of
scalar fields. In contrast to vector fields, where
disclinations are the lines moving within 3D
space (or the corresponding points in any cross-
section of the field), disclinations in the scalar
field degenerate into zero surfaces (or the
corresponding closed lines in any cross-section
of the field). So, contrary to the vector field,
where the disclinations are “point-like”
singularities, they represent moving “edge”
singularities in the scalar field. Moreover, the
point disclinations do not exist in the scalar
field, following from the field continuity and the
fact that the amplitude of linearly polarized

wave vanishes at each point of the field twice

per period of its oscillations.

Such behaviour of the field is illustrated in
Fig.2 by the
component of the Poynting vector in the vicinity

behaviour of transversal
of isotropic vortex [15].

It can be seen that the transverse
component rotates around the vortex centre with
the frequency of oscillations, and the rotation
direction is determined by the sign of
topological charge of the vortex.

Instantaneous orientation of the Poynting
vector component for different moments is

presented in Fig. 3. It is described by the relation
7 =52 -Sta~k), ©

where S is the topological charge of the vortex.
It follows from Eq. (9) and Fig. 3 that the
azimuth of the Poynting vector for some instant
does not depend on x and y. It suffers a jump-
like change while crossing the disclination.
Thus, the well-known circulation of the ave-
raged Poynting vector (see Fig. 4) occurring in
the vicinity of the vortex centre (cf. [24]) results
from averaging of “similarly oriented” vectors.

I N S
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HHHHHH Vortex posttion—  « « o o o~~~ £ /////
T T S
a C

Fig. 3. Instantaneous orientation of transverse component of the Poynting vector for different
moments. The temporal step between the figures is 1/16 of the oscillation period.
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Fig. 4. Circulation of averaged Poynting vector in
the vicinity of vortex centre.

It is seen from this figure that the azimuth
of the averaged component of the Poynting
vector has a singularity at the vortex centre,
which is a kind of the “centre” [31]. Both cases
depicted in Fig. 4a and 4b are associated with
the positive Poincare index N = +1. That is why
one should introduce an additional parameter,
e.g. a chirality V', in order to characterize com-
prehensively the above singularity of the
Poynting vector. Let us assume that the field
propagates towards the observer. Let the po-
sitive chirality V=+1 (see Fig. 4b) correspond
to the clockwise vector circulation, whereas the
negative chirality V' =—-1 (see Fig. 4a) to the
counter-clockwise circulation. Hereafter we will
refer to such the azimuth singularities of the
Poynting vector (as well as the singularities
similar to them) as the “vortex singularities”.

The situation is much more complicated for
the scalar field of general form, but the
behaviour of the Poynting vector is the same as
in the case of isotropic vortex. Temporal
behaviour of the transversal component for the
area of random scalar field is illustrated in
Fig. 5. Disclinations rotate according to the

F
Vortex
Saddle point
. - A
a b c d

signs of their topological charges. Disclinations
rotating in the opposite directions and corres-
ponding to the adjacent vortices converge at the
saddle points of phase (cf. Fig. 55 and 5¢). Then
they diverge again in the direction orthogonal to
that of the convergence (see Fig. 5d and 5a).
The direction of motion of the disclinations is
indicated by white arrows in Fig. 5.

The second kind of instantaneous sin-
gularities arising in scalar fields is constituted by
the singularities of transversal component of the
Poynting vector that correspond to its zero mag-
nitude and a non-zero z-component magnitude.
These singularities are point-like. Possible rea-
lizations of the point-like singularities can be re-
duced to the structures shown in Fig. 6. Contrary
to the vortex singularities, here the angular mo-
mentum of the field averaged over spatial
coordinates and short temporal interval ot
vanishes in the nearest vicinity of the singu-
larity. Hereafter we will refer to the singularities
of this kind as “passive singularities”.

Let us assign the term “positive passive
singularities” for those presented in Fig.6a (by
analogy with the flux behaviour in the vicinity
of positive electric charge). Singularities shown
in Fig.6b and 6¢ will be respectively called as
“negative” and “saddle passive singularities”.
Specific behaviour of the transversal component
of the Poynting vector in the areas correspon-
ding to all kinds of point-like singularities,
which is derived due to computer simulations, is
illustrated in Fig. 7. It is seen from Fig. 6 and 7
that the passive singularities can be characteri-
zed by both positive (see Fig. 6a and 65, as well

Fig. 5. Temporal behaviour of the transverse component modulus for a random scalar field. The
direction of movement of the disclication is indicated by white arrows. The temporal step separating

figures is %4 of the oscillation period.
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Fig. 6. Instantaneous “passive” singularities: a
— positive singularities, b — negative singularity
and ¢ — saddle singularity.

as Fig.7a and 7c¢) and negative (see Fig. 6¢ and
7b) Poincare indices.

The adjacent passive singularities with dif-
ferent signs of the Poincare index are connected
into singular nets by the current lines of trans-
versal component of the Poynting vector. For
that, a saddle character of the saddle singularity
provides a topological connection between the
singularities with the positive indices. Therefore
these singularities are born and annihilate by
pairs (with plus- and minus- indices), without
arising of additional singularities. The motion of
such the singularities is governed by a number
of regularities. In part, the analysis of Egs. (6)—
(8) (i.e., the impossibility for vanishing £ and
E% simultaneously) yields the conclusion that
the passive point-like singularities unavoidably

pass through all stationary points of the phase
and intensity.

Fig. 7. Behaviour of transversal component of
the Poynting vector in the areas corresponding
to all kinds of point-like singularities (computer
simulations).
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3.2. Singularities of the averaged
Poynting vector of scalar fields

The averaged Egs. (6)—(8) take the following

form:

400
8w Ox

_cA
87w oy

P- cA’

T A4rx

where A4 denotes the amplitude and @ the

o]
I

(10)

el
[

phase.

Similarly to the preceding case of the
instantaneous Poynting vector, the two kinds of
singularities can arise:

1. All the components of the averaged Poynting
vector vanish (see Fig. 85 and 8c). This case
corresponds to the averaged vortex singularity
localized at the vortex centre. The amplitude 4
is zero. Conventional circulation of the Poynting
vector is observed in the vicinity of the vortex
centre. Such a singularity of the azimuth of the
Poynting vector is characterized by the positive
Poincare index. Singularities with different
chirality correspond to the vortices differing in
the sign of the topological charge.

2. Only the transversal component vanishes (see
Fig.8a, 8d and 8e). Then the averaged passive
singularities take place. As follows from Egs.
(8), their coordinates coincide with those of the
stationary points of phase. The direction of the
energy flow at these points coincides with the z
axis.

In other words, these points just determine
the “prevailing direction” of the energy flow of
scalar waves. A possible behaviour of the
Poynting vector in the nearest vicinity of those
singularities derived with computer simulations
is illustrated in Fig. 9.

The negative (saddle) passive singularities
provide topological connection between the
vortex singularities with the same -chirality,
while the adjacent vortices with the opposite
directions of circulation of the Poynting vector
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Fig. 8. Possible behaviour of the Poynting vector in the vicinity of averaged singularities
of a scalar field: a, d, e — passive singularities and b, ¢ — vortex ones.

are directly connected by the current lines of
transversal component of the Poynting vector.

4. Singularities of the Poynting vector of
vector fields

4.1. Instantaneous singularities of vector
fields

Similarly to the case of scalar fields and in
accordance with Eqgs. (3)—(5), the instantaneous
singularities of the Poynting vector arise at the
field points, where a disclination or
instantaneous zero amplitude of the transversal
component of this vector occur. It is known
[3,13] that the disclinations are point-like
singularities of vector fields. It has been shown
[3] that the disclinations move along the s -
contours, they are born and annihilate. The
number of disclinations at the s-contour can

only change by even number, i.e. similarly to all

Fig. 9. Possible behaviour of the Poynting
vector in the nearest vicinity of the averaged
singularities (computer simulations).
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the topological defects, disclinations are born
[13]. Motion of
interconnection

in pairs
their
connection with the other structures of field

and annihilate
disclinations, and
obey topological regularities. This is why the
events associated with the singularities of the
Poinging vector resulted from discinations must
obey similar regularities.

As follows from Egs. (3)—(5), there are no
limitations on the sign of singularity associated
with the disclination. Moreover, the positive in-
stantaneous singularities of the Poynting vector
can be both the vortex and passive singularities.
This circumstance is illustrated by the results of
computer simulations presented in Fig. 10. Note
that such newly arising singularities can be both
vortex ones, i.e. both singularities can be charac-
terized by the same Poincare indices, differing
only by chirality. A difference in chirality is
sufficient for providing interconnection between
the born Poynting vortices, though insufficient
for forming topological connection with the
other field structures.

Hence, the two following scenarios of the
birth and annihilation events are possible for the
singularities of the Poynting vector associated
with disclinations:

1. Assume that two vortex singularities N’

are born at the s -contour, their chiralities being
opposite and their Poincare indices the same
(both  positive). with  the
conservation law for the total topological index

In agreement

Ukr. J. Phys. Opt. 2006, V7, Ne3
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Modulus

| Passive
disclinaon

s-contour

Fig. 10. Singularities of the Poynting vector associated with disclinations for random vector field: a
— instantaneous distribution of the modulus of transversal component of the Poynting vector,
b — distribution of instantaneous azimuth of the transversal component (the levels of grey
correspond to different orientations of the vector and the direction of arrows indicates the sign of
Poincare index of singularities) and ¢ — distribution of the modulus and azimuth of the transversal
component (orientation of the Poynting vector is indicated by white arrows).

[14], the two singularities N, with the negative

index must be born simultaneously with the
birth event of the former singularities. This
should occur at the same point, i.e. at the s -con-
tour. Evidently, these are the passive sin-
gularities, which leave the s -contour just after
they have appeared and “walk” to the region of
elliptical polarization. The topological reaction

2N/ +2N, <0 (1)
corresponds to this event, i.e. four singularities
of the transversal component of the Poynting
vector appear and disappear.

2. One of the singularities N, , associated

with the disclination has the positive index (it
does not matter whether the vortex or passive
singularity is concerned) and another one the
negative one. In this case the topological
reaction of appearance-disappearance  of

singularities is transformed to the form

N/, +N,<0. (12)
Only two singularities of the Poynting vector
take part in this reaction.

Similar to the disclinations themselves, the
singularities of the Poynting vector associated

Fig. 11. Behaviour of singularities of the Poynting vector associated with the disclinations for different
moments. Temporal step separating the figures is 1/8 of the oscillation period: a—d — distribution of the
azimuth of transversal component of the Poynting vector (the levels of grey correspond to various
orientation of the vector) and e—h — distributions of the modulus and azimuth of the transversal
component. Orientation of the component is illustrated by thin white arrows. Bold white arrows in
fragments a—d indicate the direction of motion of the singularities. Symbols B and B are the
instantaneous singularities of the Poynting vector with the positive and negative indices, respectively.
Solid lines are the s -contours.
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Passive

with disclinations move along the s -contour,
disappear and are born again (see Fig. 11). Their
positions are repeated twice per the oscillation
period. The singularities birth and annihilation
events can be accompanied by appearance and
disappearance of additional singularities, when
only the transversal component of the Poynting
vector vanishes.

In general case, these singularities do not
belong to the s-contour. Similar singularities
can appear independent of the birth events of the
Fig. 12). For that, the
singularities not connected with the s -contour

disclinations (see

can be both passive and vortex ones.

Temporal behaviour of the instantaneous
vortex singularity, which is born in the area of
elliptical polarization, is illustrated in Fig. 13.
One can see that the singularity passes through
the area of nonuniform polarization.

In conclusion, we are to stress that the
“instantaneous” angular momentum averaged
over spatial coordinates and short temporal
interval o, being observed in the vicinity of the
vortex singularity, has a maximal magnitude that
exceeds the momentum magnitude in the other
field areas with the same energy per unit area,
irrespective of the origin of singularity (e.g.,
from the disclination or in some other way).

138

Fig. 12. Instantaneous
singularities associated with zero
magnitude of the transversal
component of the Poynting vector:
a — distribution of the component
azimuth indicated by shades of
grey and b - the azimuth
(indicated by white arrows) and
the modulus of the component
(indicated by shades of grey).

4.2. Averaged Poynting vector of vector
fields

As shown in the works [29,30,32,33], the
appearance of singularity of the averaged
Poynting vector in the area of elementary
polarization cell is related to the presence of
C-points  with  specific  characteristics.
Obviously, this pattern of the phenomenon is
directly extended over the case of singularities
of the Poynting vector for the fields of general
form. Namely, the appearance of the Poynting
vector singularity is always associated with the
C-point located near this
Fig. 14).

The type of singularity (vortex or passive)

singularity (see

depends upon a relation of signs associated with
the topological charge of the vibration phase of
the C-point and with the handedness factor /.
The vortex singularity arises when these signs
are opposite:

S.=—h/2. (13)

The passive singularity is formed when the
signs of Sc and /4 are the same. As follows from
Eq. (2) and Eq. (13), the vortex singularity of
transversal component of the Poynting vector
corresponds to the C-points with the negative
index (i.e., the negative C-points), and the

Fig. 13. Motion
of the
instantaneous

vortex singularity
born in the area
of  nonuniform
polarization.
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>(I C point

Poyntmg Vector
Singularity

Fig. 14. Displacement of the Poynting vector
singularity with respect to the position of
C-point.

passive singularity of the Poynting vector
appears near the positive C-points.

The latter circumstance is illustrated by the
data of computer simulations performed for a
random vector field (see Fig. 15). It is seen that
the negative C-points are located near the
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vortex singularity indicated by the numbers 1,1.
The passive singularities are attracted towards
the positive C -points (numbers 2,2). Notice that
the vortex singularities differ in the chirality
(V' =+1 or V =-1), which is determined by the
sign of the handedness factor for the area
C-point.  The
transversal component of the Poynting vector

containing the negative
circulates clockwise around the Poynting vortex
in the areas of right polarization (A=+1,
V' =+1) and in the opposite direction in the
areas of left polarization (h=-1, V' =-1).

In conclusion, we represent Tables 1 and 2
of the
Poynting vector singularities and their connec-
tion with the conventional optical singularities.

summarizing the main properties

=) Fig. 15. Interconnection
k" P"?ht.'h?.”d between the singularities
Ay P 0'arization transversal

'y of
7 component of the
Poynting vector and the
C -points. The symbols
B and B label the
negative and positive C -
points, respectively, and
the symbols O and ® the
vortex and  passive
singularities. Chirality of
the vortex singularities is
indicated by bold white
arrows and black solid
lines represent the -
contours. The numbers
give the examples of
specified pairs of the C-
points associated with
the singularities
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Table 1. Instantaneous singularities of the Poynting vector.

Kind of Poynting
vector singularity

Edge Vortex singularity (VS) *

Passive singularity (PS)

Its localization coincides

Moving PSs unavoidably
pass through the

Scalar field with equi-phase lines Do not exist stationary points of phase
and intensity
As a rule, VSs coincide|PSs can appear
Vector field Does not exist with disclinatons independent of]
disclinations
* VSs have the same topological index and differ in chirality.
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Table 2. Averaged singularities of the Poynting vector.

Kind of Poynting

vector singularity Vortex singularity (VS)

Passive singularity (PS)

with the vortices.

vortex phase.

1. Localization of VSs coincides|l. Positions of PSs coincide with the

Scalar field 2. Chirality of VSs is determined|2. As a rule, PSs in the far region are
by the topological charge of the|located in the saddle points of phase.

stationary points of phase.

negative C -points.

Vector field  |and C -points are different.

region where PS occurs.

1. VSs are associated with the|l. PSs are associated with the positive
2. Generally, localizations of VSs|2. Generally, localizations of PSs and

3. Chirality of PSs is determined by
the handedness factor within the

C -points.

C -points are different.
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