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Abstract

We consider theoretically and experimentally the structure and the orbital angular
momentum (OAM) of the beam array consisting of aggregate of coherent fundamental
Gaussian beams, whose axes are located on the surface of hyperboloid of revolution. An
intrinsic characteristic of such the beam system is its OAM that cannot be eliminated by
whatever transformations of the reference frame. This construction of the array enables one
to change the OAM from zero up to very large values.
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1. Introduction

Singular laser arrays are a subject of a rapt
attention because of their unique properties for
trapping and transportation of microparticles [1]
and other applications in both linear and
nonlinear optics [2]. The most attractive feature
of field structures in the singular laser arrays is
an angular momentum that can be separated, in
accordance with Allen et al. [3], into a spin
angular momentum and an orbital angular
momentum (OAM) for paraxial light beams.
Manipulating topological charges of vortices
and a circular polarization of the beam, we can
create a field structure either with a double
angular momentum or none momentum at all
[3]. When the paraxial beam is linearly
polarized, we can manage the OAM only.

A combination of laser beams (called as a
beam array), whose axes are displaced with
respect to the optical axis, has been earlier
shown to enable creating a high-quality focal
spot for medical and technical applications [4-6]
after focusing with a lens system.
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Experimental studies of similar beam arrays
generated with a staircase mask [7] and a wedge
stack [8] illustrate good singular properties of
such systems. On the other hand, the authors of
the study [9] have drawn attention to the fact
that a misaligned single Gaussian beam (which
is displaced and tilted with respect to some axis)
possesses an OAM, whose value might be easily
changed. At the same time, it is evident that the
mentioned OAM could be eliminated by
appropriate transformations of a frame of
reference. We have supposed that a symmetric
system of such misaligned beams could possess
a number of novel intrinsic properties that are
not inherent to separate singular beams.

The aim of the present work is to study a
structure and OAM of misaligned beams, the
axes of which are located on the surface of
hyperboloid of revolution.

2. Field Structure of the Array

In order to make up the above beam system, we
set the waist centres of the fundamental
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Gaussian beams at the vertices of a regular
polygon at the plane z =0 and at the distance 7,
from the origin O. The axes of all the beams are
parallel to z axis of the initial reference frame
{x,y,z}. Now all the beam axes lie at the
cylindrical surface. Let we place the origin O’
of a new frame of reference {x',y’,z'} at the n-
th vertex of the polygon in such a way that the
z' axis remains parallel to the generatrix of the
cylinder, while the x' axis is rotated by the
angle ¢, relative to the initial x axis. Then we
tilt the {x', y',z’} frame to the x' axis by an
angle a (see Fig. 1), thus forming the reference
frame {x,,y,,z,} associated with the n-th beam
of the array. Having performed such the
operations with all the beams, we create a light
array with the beam axes laid on the surface of a
hyperboloid of revolution. We will put that all
the beams have the same waist radius p at the
plane z=0.

In real beam systems, the angle « is very

small ( 107 =107 rad), so that sina~a . It

is suitable to express the coordinates
{ x,, »,z,} in terms of cylindrical
coordinates {r, o, z} (x=rcose and

y =rsing). Then a given point 4 (see Fig. 1)
has the coordinates
x, =reos(p-9,)-r
v, =rsin(p-9,)-az, @)
z,=arsin(p-g,)+z

while the radial position of this point is

characterized by the radius »” = x + y>:

r2 =7 =2rr,cosd, —2arzsing,, (2)

where &, =@ —@, and 7> =7 +71; .

Since the waist centres of the beams are
lodged at the vertices of a regular polygon, the
azimuthal coordinate of the n-th vertex is
@,=n2x/N,with N standing for the number
of vertices in the polygon (i.e., the number of
beams in the array), whereas the index of each
beam is n=1,2,..N. Let each beam have the

initial phase A, = (onlz(nz;jl, ( =0, +£1,
12,..., where [ is a specific number of singular
arrays). It means that each beam in the array
gets the only additional phase at the z =0 plane,
whose magnitude depends both on the beam
position (the index #7) and the initial conditions
assigned by experimentalist (the index /), i.e.
the phase A, characterizes a phase matching in

the array. For example, if the array has N =3
beams and /=1, then the full phase variation
after going around the array axis z at some
array cross-section is equal to 2z . This is an
evidence of the fact that the array can potentially
carry optical vortex with the topological charge
equal to +1. On the other hand, the index -1
corresponds to a possible vortex with the
topological charge equal to —1. The value / =0
is then associated with a topologically neutral
beam array. However, as we will see later on,
the value / # 0 is not a sufficient condition for
arising the only vortex in the array.

Here we consider a scalar case of wave

Fig. 1 Sketch of singular beam array containing Gaussian beams in free space (a) and its

cross-section by the plane z=0 (b).
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propagation. Besides, we focus our attention on
a paraxial approximation of the wave process.
Then the transverse electric (E,) and magnetic
(H,) vectors of the beam field may be
expressed in terms of one scalar wave function
¥, so that E,(r.p,z)=e ¥, (r,0,z) and

H,(r,¢,z)=h, ¥, (r,p,z), where e, and h, are
constant vectors. The wave function ¥, of the
n-th fundamental Gaussian beam in the frame of

reference {x,,y,,z,} is

2
¥, = ZleXp{—ik ;; }exp[i(kzn -4,).3)

n n

where Z, =z, +iz,, z, =kp® /2, and k is the

wave number.

w=3w,. )
n=1

The expression (3) in common with Eq. (4)
enable us to perform computer simulations of
the wave structure. However, these expressions
do not permit one analyzing theoretically the
array behaviour and calculating its OAM. On
the other hand, we could make use of the results
[9] and expand the wave function (3) into a
uniform series on Bessel functions. However,
the obtained expression would consist of a
product of two asymptotic series and any
practical calculations employing them would be
too difficult. Instead we will do the following.
Since in our consideration ¢ is a small angle,

we could suppose, to a high enough degree of

Now the wave function of the beam accuracy, that 1/Z, ~1/Z (Z =z +iz,). Using
combination is Egs. (2) and (3), we can rewrite Eq. (4) as
N
Y=Y Z exp(dexp(i9, )+ Bexp(-i9,))exp(ilgp,)., ()

n=l
where ¥, :exp(—R2 +ikz)/Z R® =ikr*/2Z,
, B=—iz—°(SR—E)L,and
Z P VA P
R=r/p, E=ala,,, where a,, =2/(kp) is
the divergence angle of the Gaussian beam.
Besides, we have 3, = p -9, .

Making use of the series

0

exp(x)= Zj—' > (5a)
(x+y)f=i(j ]x”y” (5b)

in Eq. (5), one obtains the expression

1 jj - S
Y=¥,> — AP B explilj -2 expli(j—2p+I . 5¢
S Al -2p)eld exlili -2 o) )
The third sum in Eq. (5¢) represents a geometric series
N o
. 27\ _|N, if j=2p+l=mN,m=0,£1,£2,...
; exp{z (J —2p+ l) (HNH B { 0, elsewhere ©)
Consequently, we find that
© © q g+Ln gL,
LIJ:LPO]V zexp(l Lm¢))xz(;ﬁ q_ZLm 4% B2 B (7)
m=—w q=

where L,=mN-/ and [<N. The value
(q_Lm)
2

in the binomial coefficient of Eq. (7)

must be an integer. This requirement results in
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two possible types of series in Eq. (7) for odd
and even integers in the binomial coefficient:

=1
Zw(quij”=lzs(2x), ®)

q=0
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2g+1
1 (2q+1)x 2 :]2&1(2\/;), )

S (2g+1)\q+s

where Iv(x) denotes the modified Bessel

[Ms

function and s =0,%1,=2,.... We finally obtain

the wave function of the array in the form
mN-/

¥ =W¥,N i (;’jzlmw (2@ ) (10)

xexp[i(mN —l)(p}
Besides, we can express the variable AB at
the z=0 plane through the dimensionless natural
parameters R and =:

rAE?-R2 A R+
3 and — =
P B M-

The expression (11) possesses a number of

(1]

AB =

. (11

(1]

important properties. First of all, we can restrict
ourselves only to two terms in Eq. (7) with
m=0, m=+1 for [ >0 and m=-1 for /<0

( ‘l‘ < N), provided that the parameters R and
2 are small (R, E<<1). For example, in a

simple case of N=2 and /=1, we find from
Eq. (11) for the central vortex that

w~21,2-/4B ){\E exp(-ig)+
(12)

A , P4 explikz)
+\/;exp(l(p)}exp(—zk 57 ] AR

This wave function describes the wave

propagation of ordinary Bessel-Gaussian beam
bearing two optical vortices with the topological
charges /=-1 and /=+1 and different weights
(a so-called anisotropic vortex). At the same
time, a pure optical vortex appears at z=0 pla-
ne if we have R == . However, as the array pro-

pagates along z axis, the value A'B’#0 and the
vortex structure is distorted. On the other hand,
the array carries a pure edge dislocation along
the z axis, if the angle a=0 and W «crcose .
Moreover, we may describe the array
propagation in frame of the Bessel-Gaussian
beam approximation in the more general cases

‘l‘>1 and N >2. However, large values of the
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parameters R and = cause us to take into
account additional terms in the series. So,
variations in the angle a and the displacement

r, result in arising a vortex chain in case of two

beams in the array (see the state {2, 1} in Fig. 2)
or a vortex net for higher-order arrays (see the
rest of the states displayed in Fig. 2). The states
of the array are completely characterized by
means of the two numbers {N, /} and the two
dimensionless parameters {R,Z}. Fig. 2
illustrates the structure of intensity distribution

of the array in different states {N, / }.

3. Orbital Angular Momentum

In order to find the OAM, we use the expression
[10],

2z 0

L. :i<‘1’aa¢‘1’>:i [do[rea,war.(13)
0 0

The magnitude of the OAM is (see
Appendix A) as follows:

L :{z S N, (20)

m=—00

(14)

N B, 2] efo)
where

O=(22-%), N=(E-R)(E+%) (5)
and />0.

First of all, it is necessary to note that the
OAM in Eq. (14) does not depend on the
longitudinal coordinate z and so it is an
invariant of the array [3, 11]. Besides, the
presence of two variables = and R (see Eq.
(15)) supposes a complete behaviour of the
OAM under variations of the angle ¢ and the

displacement 7, in the array. At the same time,

we can conditionally speak about two processes
connected with a destructive interference and
array geometry that contribute to the OAM. It is
these complete variables that evidence two
competitive processes. The first of them is
interference
which

connected with a destructive
between the phase-matched beams,

Ukr. J. Phys. Opt. 2006, V7, Ne3
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{2,1} {4,1} {6,1} {81}
{9,1} {9,2} {10,3} {12,5}

results in creating optical vortices, while the
second process is associated with the geometry
of the array. It is a symmetrical system of skew
beams that has created an additional OAM
inherent even to incoherent beam system.

Fig. 3 illustrates variations of the norma-

lized OAM L_/L__ dependent upon the

dimensionless displacement R (Fig. 3a) and the

—

angle = (Fig. 3b). The angular momentum
LZ(ER) increases at first, passes through the

maximum and then begins to decrease. Further
behaviour of the OAM depends on the
magnitude and sign of the angle = . Zero angle
= predetermines a fast reduction of OAM down
to zero, when the displacement R increases.
Indeed, as the beams are removed far from the
array axis, the contribution of destructive
interference decreases and the OAM tends to
zero. However, decreasing behaviour of the
AOM turns into growth of its modulus, when
the angle = differs from zero.

It is important to stress an interesting trait
of the phase-matched beam array. So, the
angular momentum of a misaligned beam [9]
can be eliminated if the origin of the reference
frame coincides with the beam axis (R =0),
though = # 0. Moreover, the OAM of an array
of equal-phase beams with a common origin is
also zero for any angles =. In this case the
geometrical contribution to the OAM vanishes.
A completely different type of behaviour occurs
for the phase-matched array. Fig. 3b shows that
the OAM in such the beam array (with the

beams coincident at z =0 plane) increases as

Ukr. J. Phys. Opt. 2006, V7, Ne3

Fig. 2. Structure of intensity
distribution of the array in different
states {N, [} for # =0.2 and Z=0.1.

the angle = changes. A central zero in the
intensity distribution presented in Fig. 4a and a
nearly helical shape of a wave front (Fig. 4b)
point out that the destructive interference here
forms an optical vortex at the array axis.

For practical estimations, it would be very
suitable to use the OAM per photon [3] defined
as a ratio L_/I, where I stands for the beam
intensity. In our calculations we employ the

magnitude <‘P“P> being proportional to the

-0.5 0 = 0.5

L
Fig. 3. Variations of normalized OAM —=— as

a function of dimensionless displacement ‘R (a)
and angle = (b) in the array for the state {3, 1}.
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Fig. 4. Intensity distribution | (a) and wave front surface (b) for the {3, 1} state of the

array at z=0, ®=0 and =0.1.

intensity, so that the magnitude =L, /<‘P“P>
is the specific OAM (i.e., the OAM per photon
for a given frequency @). Using Egs. (13) and
(14), we obtain

N Z m z\’\mNillmN—/ (2®)

L
n= —r—r=l-——""% .(15)
T S ko)

This equation enables us to simplify
evaluation of the specific OAM 7 under the

condition of ® <<1. In Appendix B, we show
that for this case

(E B SR)2(N—I)
E+R) +(E-n)PV)
Thus, Eq. (16) may be rewritten for very

n~I-N (16)

small displacements R and angles = as
0, N=2landN =1/
no=limg = 477 = / N >2]
/-N, N <2l

(17)

One should bear in mind that the total
intensity of the phase-matched array is equal to

zero if M===0, ie. <‘P“I’>M:O’E:0=O and

L.(R=0,2=0)=0, too.
specific OAM is uncertain at this point. But any

Consequently, the

slight (as small as we wish) angular or linear
displacement of the beams takes this uncertainty
away. Thus, Eq. (16) takes place for all

—_—
—
—|

R|<<1, except for the point R ===
Besides, Eqgs. (14) and (16) have been

derived from Egs. (10) and (13), provided that
I<N (see Egs. (6) and (7)). The condition

>
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[>N corresponds to the beams with equal
initial phases. As a consequence, we can expand
Eq. (17) to the case of 77, =0, ifonly />N .
The expressions (16) and (17) show that the
beam array with even number of beams has a
zero OAM (if Z=0) for any linear displacement
N, if N =2/. At the same time, phase-matched

arrays with an odd number of beams always
carry OAM.

The initial OAM of the array caused by
destructive interference can be completely
suppressed by picking up the appropriate angle
E=0 or the displacement R (see, e.g., Fig. 3a
and b). This effect manifests itself most
distinctly in the dependence 7(Z) for the array
state {3, 1} shown in Fig. 5a. The specific OAM
is unit (n7=1) for the angle ==0. Fig. 5b
illustrates a nearly ideal optical vortex typical
for this case. With decreasing angle =, the
specific OAM decreases, too. It crosses E axis at
the point Z~0.12 . Although the array does not
carry OAM now, the optical vortex is cited at
the array axis (see Fig.5c). However, the
structure of the beam is distorted. Additional
optical vortices with the opposite topological
charges appear at the beam edges.

To calculate the angle Z, that corresponds
to zero angular momentum of the array, it is
necessary to equate the second term in Eq. (16)
to the first one. After simple mathematical
transformations we find

_L(N—Z)SR—IERZ(N_ZI)H
2 N+1-(N=1)RHN2)°

[1]

(18)

0
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where we have supposed that R>>Z and
employed Eq. (5b). This angle characterizes the
point where the two competitive processes
(those related to the destructive interference and
the array geometry) counterbalance each other.

—
(=
—

Variations of the angle in the area
-1<E<0 for />0 (or in the area 0<E<1
for / <0) are accompanied by drastic variations
of the specific OAM 77. However, a subsequent

decrease (or increase) in the angle Z s
associated with a monotonous decrease (or
the

particular, the linear dependence between the

increase) in angular momentum. In

specific OAM 7 and the parameters = and R

becomes apparent for R >>1:

n~2RE

krya . (19)

It is in this area that the destructive
interference vanishes (see Appendix C). This
expression shows also that we can reach rather
high OAM with

manipulations of the displacement R and the

values appropriate

—
—
—

angle = . Besides, such the OAM inheres in any
symmetric compositions of Gaussian beams and
cannot be eliminated whatever transformations

of the frame of reference are performed.

4. Optical Wedge as a Device for
Generating Singular Beam Arrays

The method of the amplitude masks and the
computer-generated hologram technique are
typical methods for generating equal-phase
beam arrays (see, e.g., [1]). On the other hand,
we have recently illustrated [8] a capability of
wedge stacks for generating phase-matched

A

Y/

ot ____TI=

Fig. 5. Dependence of angular momentum 7

on dimensionless parameter for the
vortex-bearing array with a zero OAM: {3, 1}
and R=0.1.

arrays bearing high-order optical vortices. Such

—
=
—

singular arrays have also turned out to be stable
under focusing with lens systems [12]. The
beam array has been shaped due to diffraction of
beam at the edge of each wedge in the stack.
Here we will demonstrate experimentally one
more property of the wedge surface (in contrast
to the wedge edge) that consists in possibility
for creating singular arrays of a lower order for
the case of reflected light.

We have made use of a thin dielectric
wedge with a small wedge angle € and a
refractive index 7. Let a fundamental Gaussian
beam fall onto the wedge in arbitrary way
relative to the wedge verges. In a general case,
the beam axis in the wedge is characterized by
the two angles £ and y for the two projections

on the zx and zy planes (see Fig. 6). The
combinations of those beams reflected by the

wedge are displaced by the distance r, and

tilted at the angle o to each other.

(24

N
N
\\\
M2

Fig. 6. Projections of optic axis of the Gaussian beam incident oblique upon the wedge.

Ukr. J. Phys. Opt. 2006, V7, Ne3
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Fig. 7. Experimental intensity distribution in the
array generated by the wedge: (a) the vortex
chain (o ~10? rad and ry~ 50 um); (b) and (c)

>

This means that the axes of the two reflec-

ted beams are not crossed. A simple geometrical
consideration gives basic relationships between
the wedge parameters, the beam displacement
2ry and the angle 2¢ in the following form:

_ 1 hsin2p

o= 2 2
2. /n* —sin? g

The phase shift A between the beams can

ax (n—1)§. (20)

be manipulated by changing the beam incidence
point on the upper wedge surface and the angles
p and y. Besides, the second beam gets the

additional phase 7 at the expense of reflection
by the lower wedge surface. As a consequence,
they form elementary beam array with N =2
and / =1. In the experiment we have employed
a glass wedge with the refractive index n=1.5.
The wedge angle varies over the wedge surface

within the interval of 8~ (2+9)-107 rad.

The wedge has been illuminated with the
radiation of He-Ne laser (A4 =0.6328um ).The
wedge thickness could be changed from 25 to 55
pm at the incidence point. Let the fundamental
Gaussian beam with p=0.5mm is focused by

the lens ( f =150mm ) onto the wedge surface.

The beam waist at the focal plane is about
p =50um . Two reflected beams form the array

whose intensity distribution is detected by a
CCD camera. In a general case, the destructive
interference of skew beams forms a chain of
optical vortices, whose structure is essentially
distorted (see Fig. 7a and compare it with
Fig. 2a). Any variations of the lens position and
the positions of the beam waist at the wedge
surface result in changing the vortex structure.
The array with a single centred vortex is created
in case when the waist of the initial beam is
sited at the wedge surface (see Fig. 7b and ¢).
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single-charged vortex and its
pattern (o ~ 4x10™ rad and ro~ 25 pm).

o0

interferential

5. Conclusions

Thus, we have shown theoretically that a phase-
matched composition of Gaussian beams, whose
axes lie on the surface of hyperboloid of
revolution, form a singular beam array that bears
a net of optical vortices. The state of the array is
defined by the two number {N, /} and the two
dimensionless parameters: the angle = and the
displacement R . It is these four numbers that
characterize the OAM of the array. We have
revealed that

there are two competitive

processes inside the interval of parameters
R? <=?, which can form the array with a zero
OAM that nevertheless bears an optical vortex.
OAM of the
unrestrictedly increase outside this interval. Let
us also notice that the OAM of symmetric com-
positions of Gaussian beams cannot vanish after

Moreover, the array can

whatever transformations of a reference frame.

Furthermore, we have illustrated a simple
experimental technique based on utilizing a
dielectric wedge that enables us to generate low-
order singular beam arrays.
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Appendix A
At first we find the integral over azimuthal angle
@ in Eq. (13), employing the integral

2

Jesolitn =g} do={ 3™

0

if m=gq
otherwise ’
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so that

2
=-27N* exp(—r]x

xile(j (A1)

m=—

20,2 4B ex ( j

0
Then we have

2)Iv(bx)lv(cx)dx

1 b*+c’ ), ( be
=——exp I, —|
2p 4p 2p

whence we find Eq. (14) provided that @ = b in
Eq. (A2).

X exp(— px

Se—8

(A2)

Appendix B

One can present the sum in the numerator of the
second term in Eq. (16) in the form

=Y, e)

m=0

+ im N (20)

m=1

= _Z m N7(MN+I)1mN+1 (2®)

m=0

L(A3)

+ Z(m + I)N[(mH)N_[]I(mH)N—I (20)

m=0
0<<l,
approximation of modified Bessel function

Iy, (20)xel ™ (A4)
and so obtain

S, = i{—m(:JriR)z

m=0

Since we can use the

(mN+1) + (m + 1)(E _

m)z(m,\u/) }’

where 2=(E+ER)2 and ON=(E-R). The

fist and the second terms in the last equation are
geometric series:

SmxN = T (A5)

Ukr. J. Phys. Opt. 2006, V7, Ne3

g 1
> x=— TRy (A6)

m=0

Thus, we have
&zh_e+myw*{4a+mﬂM”

— =-R
g -apern) BBV

Similarly we find the sum in the
denominator of the second term in Eq. (16):

E+nf  (z-x)
1-E+R) 1-E-Rv)"
Issuing from the assumption that
=, R <<1 and using Egs. (A7), (A8) and (15),
we finally arrive at Eq. (16).

(A8)

5 R

Appendix C

The contribution of the destructive interference
to shaping the phase-matched beam array
becomes weaker as the distance between the
beam axes increases, i.e. when Z<<1, R >>1.
Then it is sufficient to consider the OAM of a
single misaligned beam, whereas the total OAM
of the array is a sum of partial OAMs.

We put N=1 and /=0 in Eq. (15).
Then the numerator and the denominator of the
second term in Eq. (15) change respectively to
the following forms:

S, = imxmlm (20), (A9)

m=—

S, = iw’lm(z@).

m=—0

(A10)

At the same time, the modified Bessel
functions arise in the generating function
relation [13]:

1)z -
exps| t+— == > t"I (z). All
(DI
Thus, we obtain
S, =exp(E2 +02). (A12)
On the other hand, we have
87
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imtm 1,(z)=

m=—00

= 2@ Lalll= A

Sl

where we have used the recurring relation for

the modified Bessel functions:

1,(z)= (1,0 (2)= 1, )

2m

so that

S, =-2=Rexp(E? +9?). (A14)
Substituting Eqgs. (A12) and (A14) into Eq.

(15), we get Eq. (19).
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