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Abstract

It is shown that physical manifestations of any optical singularity are, in one way or
another, related to a specific temporal behaviour of the field, no matter scalar or vector
cases are realized. Polarization singularities of the vector field are associated with a

presence or absence of angular momentum of electromagnetic field. In the vicinity of C -
point the orbital angular momentum is observed if the sings of topological charge of the
vibration phase and the handedness factor are different.
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1. Introduction

It is known that optical singularities are divided
into scalar and vector ones [1-20]. Scalar
vortices (i.e., stationary intensity zeroes)
represent principal singularities of scalar fields
[1-8]. It has been noticed that, contrary to the
scalar fields, stationary amplitude zero of vector
field (at least, for the random fields) is
nongeneric [3,9]. At the same time, stationary
characteristics of the vector fields (e.g., the
vibration phase or the parameters of polarization
ellipses such as the polarization azimuth, the
ellipticity and the rotation direction) may also
possess singularities, which have been called as
polarization singularities [3,10-20].

In the paraxial approximation, spatial distri-
bution of polarization ellipses maintains polari-
zation singularities of two kinds: S -surfaces
and C -lines [3,10-15] (in the observation plane,
we have s -contours and C -points, respectively
— see Fig. 1). The field is linearly polarized on
the s -contours and the direction of electric vec-

tor rotation is indeterminate. The C -points are
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points where the field is circularly polarized (as
a consequence, the polarization azimuth and the
vibration phase are then indefinite [3,9-15,17]).

The C-points are characterized with the
Poincar’e-Hopf index /. that describes ori-

entations of the ellipsis axes in the surrounding
planar vector field and the topological charge of

the vibration phase S, [3,9-15].

Polarization singularities are peculiar sets
of field. The field characteristics (like the
polarization azimuth, the vibration phase and the
rotation direction of the field vector) change as
much as possible in their vicinity. Moreover,
those characteristics suffer jump-like changes
when crossing the singular set (see Fig. 1a). At
the same time, the field points associated with
the singularity and those localized near it are not
distinguished within the common optical
approaches (for example, in polarimetry).
Indeed, the field behaviour is practically the
same at the singularity point and its close area
(the 4 and B areas in Fig. 1b). The modulus

and temporal orientation of the field vector have
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Fig. 1. Qualitative behaviour of vector field in the vicinities of C -point and s -contour.
A area is a vicinity of the C -point with practically the same behaviour of the field and
B area means a region with the polarization close to the linear one.

very small distinctions at the C -point and the
points of the A region. The polarization is
practically linear inside the B area.

It seems that the above considerations
would lead to obvious conclusion: the only
reason for studying optical singularities should
consist in their role in formation of the structure
of light fields, both scalar and vector. On the
other hand, singularity of any field parameter
unavoidably gives rise to some physical
peculiarities of the field in its vicinity. Then the
question arises: which are physical manifestati-
ons of the optical singularities characterized by
specific behaviour of physical system affected
by electromagnetic wave?

It is
concerning the physical manifestation of scalar

obvious that similar motivation

vortices may be adduced. But the question
answered above does not appear, because, as it
is known, orbital angular momentum of the field
arises in the vortex vicinity [21-33] and this fact
clearly evidences physical “exclusiveness” of
field structure with the vortex. Orbital angular
momentum appears due to a specific helicoidal
shape of phase surface in the vortex area, and so
it is a result of a specific temporal behaviour of
this field. In this sense, vortex as a physical
structure must be considered as a temporal
singularity. As to polarization singularities, they
also must be considered as temporal ones, in the
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end, because the singular parameters (the
azimuth and the vibration phase) define the state
of field vector not only in space but in time, too.

The answer about the temporal peculiarity
of s-singularity is trivial and it follows
immediately from the nature of the s -contour:
spin angular momentum of any field vanishes in
the wvicinity of this line owing to linear
polarization of the field along it. The temporal
peculiarity in the C -point area is not so obvious
as in the s-set case. We are stating here that
such the peculiarity is connected with the other
kind of angular momentum, namely the orbital
one. It is known [34,35] that the phenomenon
takes place in some specific cases, e.g., for the
diffraction [36]. Nonetheless, the
following question arises: does the appearance
of orbital
formation of the field structure with the C -

point? In this paper we attempt to substantiate

conical

momentum always accompany

such the point of view.

2. Angular momentum in the vicinity of
optical singularities

Let us consider the Poynting vector (PV) in the
paraxial approximation. In this connection, we
will not average the corresponding magnitudes
over the space coordinates and time, in contrast
to the conventional approach [21-33]. Let us
rather try to keep the space and temporal
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dependences practically to the very end of the
analysis.
First of all, we define the strengths of
electric and magnetic fields as
{Ex =e cos(wt + D, —kr)

H,=h, cos(wt + D, —kr)’ )

and similarly for the y and z components.

Here e, ,h,,... and ® ,® ,... are respectively

the amplitude modules and the phases of the
corresponding field components.

Except for the areas localized in immediate
proximity to some specific field points (for
example, the centres of vortices), kr may be
replaced with £z (k:Q being the wave

c
number). Then Eq. (1) transforms to the form
E. =e cos(wt+ D, —kz) 2)
H, =h_cos(wt + D —kz)’
etc. As it is known [10,22], the following
valid for the
approximation and the wave propagating in

equations  are paraxial

vacuum:

—i¢mU=V, 3)

Ui ~—jkU., @)
where U and V mean respectively the complex
wave functions of the electric and magnetic

fields and U is derivative of U .

It can be shown that the relations for the PV
components, which contain characteristics of the
electric field alone, may be obtained by using
Egs. (3) and (4) and the PV definition. Note also
that E, may be determined by the E, and E,
due to Eq. (4). As a
consequence, the following system defined only

components [22],

by characteristics of the x and y components of
the electric field is valid, at least for the far field:

X

c
P z_E{E‘)CTZ _Ey]—i}
y

C
P z_Tnk{EyTz +E.T}, (5)

c 2 2
P~—{E-+E
: 47z{x v
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where
e’ 6;
— y x X
Tl—Exq)x—EyCDy—i-—E e
e. x- e  y-
x 2 y 2
N ()
e
_ x y X Yy
I, =E,Q, +E O, +—Ex£ +—F %
e, x, e, »y
and

E _ =e;sin(ot +®, - kz)- (7

i—
2

{ E, =e,cos(wt + D, —kz)

Here e; and @, denote the modules of the
amplitude and the phases of the components,
respectively, e!,®! are their derivatives and

i,/ = x,y . Accordingly, we get
1l ¢ 2 2\y1/2
‘Pt‘:%{apz(]—i +T) 7, (3)

where P, is the transversal component of the

PV.

Let us mark that inequality of z component
of the field to zero is a mandatory requirement
for inequality of the transversal PV component
to zero. Assume now that the wave of a general
kind has a nonzero z component, e.g., due to
some curvature of the wave front and that the
field rotates in the plane perpendicular to the z
axis. In this case the transversal component of
the PV also rotates in the vicinity of some point
in this plane. Rotation of the PV component
corresponds to energy transport in the
transversal direction. Obviously, an averaged
angular momentum then appears, with the point
of application located in the rotation centre.
Generally, an averaged orbital angular
momentum would appear due to any kind of the
PV rotation, and this holds for the vector fields,
too. One can state that there is absolutely no
difference whether this rotation is a result of
experimental tricks or a natural consequence of
formation of specific temporal field structure.
Only one distinction arises: the optician cannot
“observe” energy rotation in the latter case,
because of the fact that the rotation frequency is

comparable to that of the light vibration.
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Let us now return to Eq. (8). It can be
easily seen that the module of the transversal PV
component is defined by the longitudinal one.
As a result, the transversal component of the PV
rotates if the longitudinal one changes cyclically
owing to specific temporal behaviour of the x

and ) field components. Let us test this

statement on the example of scalar vortex. The
intensity distribution in the vortex vicinity is
presented in Fig.2a. The relations for the
Cartesian PV components in case of the
isotropic vortex [6] polarized, e.g., in the x
direction may be written in the polar coordinates

P9 as

{ P ~e [cos(awt +S¢— kz)‘ )
P, ~e’cos’(wt+Sp—kz)’
where S is topological charge of the vortex.
Thus, the longitudinal component of the PV
behaves specifically in the vortex vicinity. Its
maximum (or minimum) rotates around the
vortex centre with the frequency twice as much
as that of the light vibration. The transversal
component rotates, too (see Fig. 2b). The
rotation direction is determined by the sign of
topological charge of the vortex and the
minimum of the energy density is located along
the dark straight line. Such the minimum
corresponds to instantaneous field zero and may
be interpreted as “lengthy” Nye’s disclination
(see, e.g., [3, 9-11]).

3. Angular momentum in the area
of C -point

Let us mention that the C -point appears in the
position, where one of orthogonal circularly

a

polarized components of the vector field has its
exact stationary intensity zero [3,9-11,14,15].
Circularly polarized component vortex is formed
in the C-point position. The simplest
polarization cell with the § -contour and the C -
point may be brought about as a superposition of
two coaxially propagating, orthogonal circularly
polarized beams. One of them represents a
circularly polarized isotropic vortex and the
second one is orthogonally polarized plane
wave. Let us put the origin of the polar
coordinate system to coincide with the vortex
of these

superposing beams (in terms of orthogonal

centre. The complex amplitudes

linearly polarized components) may be written
in the following form:
Uy, = pexp(jS9)

U, = pexeliso+nDn 1Y

Up =1
LT, 11
U, ==exp(—jh7) (i

where @ and p=./x*+y* are the polar

coordinates, S the topological charge of the
vortex and A the handedness factor, which is
equal to +1 or —1 respectively for the right or
Then the x

components of the resulting field are as follows:

left polarizations. and y

U, =1+ pcosp+ jSpsing

T
U =—jh+ pcos(Sp+h—)+
y =—Jh+ pcos(Se 2) ‘ (12)

+ jpsin(Se + h%)

After a little algebra involving Egs. (5)—(7),

b

Fig. 2. Temporal rotation of energy density around the vortex centre: (a) intensity
distribution in the vortex vicinity, (b) temporal rotation of the transversal PV component.

66

Ukr. J. Phys. Opt. 2006, V7, No2



one can prove that the instantaneous transversal
components of the PV are given by

¢ [1-5h
s on
xsin[2(wt — kz)]— y}(S = h) (13)
_c
YT 4k
x {cos[2(wt — kz)]+ x}(S — h)

It is seen that P,, P, =0, when S=h. Thus,
the averaged angular momentum is equal to zero
in the vicinity of the C -point, when the vortex
topological charge and the handedness factor
have the same signs. In the opposite case
(S =—h) one has

P, =——~_28{Ssin[2(t - kz)] - y}
4;215 (14)
P, =" 28{cos[2(at — kz)] + x}
47k

y

Accordingly, the modules of the
longitudinal and transversal components of the

PV written in the coordinates p, @ reduce to

C
t =~ X
27k

{1+ p*> +2pcos[2(at —kz+ Sc)1}'? | (15)
C

P =—x

Y 4

x {1+ p* +2pcos[2(at —kz+ S.)]}
where S is topological charge of the vibration

phase at the C -point (S, =1/25).

In this case, the transversal component
module behaves similarly to the longitudinal
one. It rotates with time around the C -point
with the doubled oscillation frequency. The
rotation direction of the minimum (or the
maximum) is determined by the sign of
topological charge of the vibration phase. The
P,

minimum =0 1is reached on the s-contour

and it corresponds to the position of the Nye’s
[3,9-11].  For the
distribution of complex amplitudes, the s-

disclination specified

contour represents a circle centred at the C -
point. Fig. 3 illustrates the temporal behaviour
of the transversal component module. One can
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therefore expect that the angular momentum
similar to that observed in the vortex vicinity is
observed in the C -point area.

According to [21], z component of the
angular momentum density is given by the
relation

J. =xP, = yP,. (16)

On the basis of Egs. (15) and (16), the

averaged angular momentum becomes

e 28.¢*

J, (17)
w

Po
where J = I p dp is defined by the “power” of
0

the vortex beam in the actual area of cell with

the diameter 2p,. Hence, the averaged angular

momentum appears in the C-point vicinity
when the signs of the topological charge of the
vortex and the handedness factor are opposite
and it equals to zero when those signs are the

same.

4. Experimental investigation of the
orbital angular momentum of C -point

It is obvious that the two following conditions
fulfilled in prove
experimentally the results of the theoretical

must  be order to
analysis given above:

1. Formation of polarization-
inhomogeneous field with easily controlled
parameters is necessary. Naturally, the most
convenient field is a field with only one C -
point. The coordinates of the C -point should be
easily determined and its topological charge
must be easily changeable, depending on the
experimental conditions. Certainly, the rotation
direction of the field vector (i.e., the right-
handed or left-handed polarization) in the C -
point area has to be controlled, too.

2. It is necessary to have an “indicator” of
presence of orbital angular momentum in the
field.

As for the first condition, the polarization
cell with the s-contour and C-point may be
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Se=1/2
h=-1

Fig. 3. Temporal behaviour of the module of transversal component around the C -point.
White point corresponds to the energy density minimum. It is positioned on the s -contour

and coincides with the Nye’s disclination.

realized (as we have already mentioned above)
as a superposition of two coaxially propagating,
orthogonal circularly polarized beams. One of
them is a circularly polarized isotropic vortex
and the second one is an orthogonally polarized
Gaussian beam. The C -point is localized in the
vortex centre and the s -contour is formed along
the line where the intensities of superposing
beams are the same. Qualitative behaviour of
polarization characteristics of such the field
obtained by computer simulation is presented in
Fig. 4. The rotation direction of the field vector
(the left- or right-handed polarization) in the
area bounded by the s-contour coincides with
the corresponding direction in the Gaussian
beam. Such the handedness factor is being
changed to the opposite one while crossing the
§ -contour.

The sign of the orbital angular momentum
arising in the C -point area, which is determined
by the sign of topological charge of the vibration
phase (see Eq. (17)), coincides with the “sign”
of circularly polarized vortex. Notice that
forming of the vortex with a necessary type of
topological charge is not so a complex task. This
may be performed easily enough with the
vortex-generating hologram [37,38]. So, it is

s-contour
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known that two single vortices with different
signs are observed after the hologram, which
correspond to diffraction orders +1 and —1 .

The resulting field may be obtained using
interferometric techniques, for example, with the
aid of Mach-Zehnder interferometer. Then the
application of properly oriented A/4 plates in
different arms of the interferometer provides
orthogonality of the superposing circularly
polarized beams. Therefore, the first condition
may be surely met.

As for the second one, unfortunately, the
list of identification methods of the angular
momentum is not so long [39]. In our opinion,
in our experimental situation the most
convenient is the method based on transferring
angular momentum to some mechanical system.
This technique for specifying orbital momentum
is founded on the following points:

1 As itis known (see, e.g., [40]), an optical
trap is being formed under focusing of laser
beam. Such a trap can capture and hold micro-
objects.

2. A rotation of micro-objects is observed if
the field has a spin or orbital angular momentum
(see [21-33]). The

governed by the magnitude of the momentum,

rotation frequency is

Fig. 4. Polarization cell obtained by superposition of
circularly polarized vortex and orthogonally polarized
@ Gaussian beam. Grey area corresponds to the field

region with left-handed polarization. Topological
charge S¢ of the C-point is equal to +1/2 and its sign
coincides with that of topological charge of the
vortex.
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Fig. 5. Experimental setup for observing angular orbital momentum of polarization trap:
1 — He-Ne laser, 2,8 and 10 — beam splitters, 3 and 6 — A/4 plates, 4 and 5 — mirrors,
7 — vortex-generating hologram, 9 — analyzer, 11 and 14 — micro-objectives, 12 — sample with
particles, 14 — green filter, 12 — CCD camera, 16 and 17 — backlighting system.

while the rotation direction is specified by its
sign.

3. In general, the focused beam has both the
spin and orbital angular momenta. The rotation
frequency is maximum when the signs of the
momenta are the same and it becomes minimum
(or even the rotation can change its direction)
when those signs are opposite.

Thus,
circularly polarized beams forms the optical

focusing of superposition of
trap, which is inhomogeneous in polarization.
The micro-object captured by this trap rotates
due to the angular momentum of the field. The
rotation characteristics change with altering sign
of topological charge of the circularly polarized
vortex, because the sign of the orbital
momentum also changes.

The experimental arrangement is presented
in Fig 5. Linearly polarized beam of He-Ne laser
is directed into Mach-Zehnder interferometer
(see elements 2 to 8). It transforms into
orthogonal circularly polarized beams due to
A/4 plates 3 and 6. Then one of the beams
passes through vortex-generating hologram 7.
The hologram reconstructs circularly polarized
vortex. The field structure with the s -contour
and C-point is formed at the output of
interferometer.

Further, the resulting beam is focused with
micro-objective 11 and then it is directed into
the plane of sample with micro-particles 12. The
result of effect of the beam on micro-particles is
detected using the optical system 13 and 14,

along with CCD camera. We have used a 60"
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micro-objective with unit aperture with the
purpose of forming the optical trap. The
transversal size of the trap was 8 to 10 um .

In order to determine polarization
characteristics of the resulting field, we have
chosen horizontal experimental arrangement. In
this case, the acting beam passes through the
optical surfaces without reflection. So, the
polarization structure of the beam at the sample
plane is the same as at the output of the
interferometer. One can easily choose the sign
(i.e., the direction of influence) of the orbital
angular momentum while selecting the operating
diffraction order of the vortex-generating
hologram 7.

Fig. 6 illustrates the intensity distributions
for the circularly polarized components of the
resulting vector field. Analyzer 9 may be
introduced into the beam for visualizing
polarization modulation of the optical trap. The
intensity distributions associated with different
linear polarization projections corresponding to
different orientations of analyzer 9 are presented

in Fig. 7.

a) b)

Fig. 6. Intensity distributions for circularly
polarized components of the trap field: (a) the
vortex component and (b) the “smooth” beam.
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Fig. 7.

A
.U
vortex
b) ¢) d

Intensity distributions of different linear polarization projections of the trap field. The

transmission axis of analyzer rotates in the counter-clockwise direction. Gray curve is experimentally
specified s -contour. White point on the s -contour corresponds to the vortex projection position. The
angular step for the analyzer axis orientation is approximately 30 deg.

The angular step linked to the transmission
axis of analyzer equals approximately to 30 deg.
The dark spot at the verge of the trap
corresponds to the vortex component located on
the s-contour. These points also indicate the
positions of the minimum energy density (i.e.,
the Nye’s disclination) [13], which goes along
the s-contour with temporal changes of the
vector field. As seen from Fig. 7, the intensities
of the vortex beam and the “smooth” one are
chosen in such a manner that the s-contour is
located practically nearby the border of the trap.
Due to this fact, the field has practically the
same spin angular momentum sign throughout
the trap. The coordinates of the C -point can be
determined as those of the point inside the trap,

which is characterized with the same intensity

for all the polarization projections.

Thus, the field with the orbital momentum
specified by the vortex and spin signs (without
any changes in sign) is realized in the area of the
trap with significant (“actual”) intensity. It is
this  field
characteristics of rotation of micro-objects
locked by the trap. Note that the spin momentum

region that influences the

density decreases towards the s -contour, owing
to decreasing ellipticity of polarization ellipses.
Therefore, one can state that the area with
efficient spin momentum adjoins directly the
C -point and this area is significantly less than
the dimension of the whole optical trap. Then
the change in the sign of orbital momentum
becomes apparent at the most for relatively large
objects, whose dimensions are comparable with

a) b) ¢) d

Fig. 8. Rotation of relatively large transparent particle due to the angular momentum

(clockwise direction).

Fig. 9. Changes in the direction and speed of rotation of the captured particle due to
changing sign of the orbital angular momentum.
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those of the trap itself. Due to these reasons, the
dimension of micro-particles (e.g., A/,0; in oil)
has been chosen to be comparable with the trap
space. The behaviour of these relatively large
captured particle is illustrated by Fig. 8 and 9.

It can be seen from Fig. 8 that the locked
particle rotates in the clockwise direction. The
4-5s. Fig. 9
corresponds to situation when the sign of the

rotation period is about
vortex beam is altered to the opposite, i.e. the
orbital angular momentum changes its sign. The
particle rotates in the opposite direction after
such the operation and the rotation period is
about 8-10s. The difference in the rotation
periods that takes place for the two above cases
may be explained in the following way. In the
former case, the spin momentum affects the
particle in the same direction as the orbital mo-
mentum, while changing the topological charge
of the C-point results in compensation of the
orbital angular momentum by the spin one.
Another result of the influence of orbital
angular momentum is illustrated in Fig. 10.
Small dark absorbent particle is locked by a dark
diffraction ring, which
polarization trap. Unfortunately, only a part of

circumscribes  the

the bright diffraction ring is seen in the figure,
because the intensity in the trap centre is
significantly higher than that of the diffraction
ring. In addition, the intensity slightly changed
along this ring. As a consequence, a small
dynamical range of the CCD camera does not
allow us to observe simultaneously the whole
diffraction ring, the particle and the main area of
the trap. However, it can be seen that, due to the

light diffraction ring

orbital angular momentum, the particle rotates
along the border of the “main” area of the trap in
the clockwise direction. The dimension of the
particle is about 2—4 pm . The revolution period

1s about 0.5 s.

Discussion

As a result of our theoretical consideration and
the experimental investigations, the appearance
of orbital angular momentum in the vicinity of
C -point is completely proved for the case when
the topological vortex charge and the
handedness factor have the opposite signs.

We have already noticed that the
“importance” of optical singularities (including
the polarization ones) as some junctions that
“form” the structure of optical field is beyond
question (see, e.g., [1,3-8,12-19]). At the same
time, all the known facts associated with the
subject of singular optics (except for optical
tweezers based on the vortex beams) are not
related to a direct influence of singular field
structures on another physical system. In other
words, all the achievements of singular optics
are connected, in one way or another, with
topological aspects of the formation of field
structure. In particular, this yields the following
consequence: all the known methods, which can
unambiguously specify optical singularities, are
indirect. For example, in order to determine the
vortex, a reference beam is necessary, etc.

In this sense, arising of the orbital angular
momentum in some area with the optical
singularity conforms evidently to “physical”
exclusiveness of the latter structures. Indeed,

a) b)

¢ d

Fig. 10. Rotation of small dark absorbent particle captured by dark diffraction ring
encircling the polarization trap (clockwise direction). The brightest of the light diffraction

rings is depicted by a white arrow in figure (b).
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due to that property of the field, some physical
object placed in the field suffers specific direct
influence.

In conclusion, we stress that the results of
this paper concerned with the orbital angular
momentum in the C -point vicinity have not
only fundamental importance. In our opinion,
they draw some applied interest. Namely, the
principles of forming polarization-
inhomogeneous optical trap may be used while
elaborating /ight optical traps with controlled

orbital angular momentum.

Conclusions

Summing up the results of the present studies,
we can state the following:

1. Physical manifestation of any optical
singularity is, in one way or another, connected
with a specific temporal behaviour of the field,
no matter scalar or vector cases are realized. It
becomes apparent when the angular momentum
of the field of certain kind arises or disappears.

2. The orbital angular momentum is
observed in the area of the C -point when the
topological vortex charge and the handedness
factor have the opposite signs. The direction of
influence of this orbital angular momentum is
defined by the sign of topological charge of the
vibration phase in this area.
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