Errata

Vlokh R. Ukr.J.Phys.Opt. 6 (2005) p.1-5.

Page 3. Instead sentence: "With accounting of light absorption, the relation for the polarization should contain both real and imaginary parts according to..."

Should be: "With accounting of light absorption, the relation for the electric field should contain both real and imaginary parts according to..."

Correct formula (5) is
$$E^{(\omega)} = D^{(\omega)} - \left(4\sqrt{\beta M}\sqrt{|g|} \pm i4\sqrt{\beta M}\sqrt{|g|}\right)D^{(\omega)}$$
.

Correct formula in footnote should be: $E^{(\omega)} = D^{(\omega)} \pm 4\sqrt{2\beta Mg}e^{i\omega_0 t}D^{(\omega)}$

Page 4: Eq.(9) is incorrect. Correct formula (10) should be $|\Delta W| \approx 10\varepsilon_0 \beta MgD_0^2$.

Instead sentence: "The electromagnetic wave energy is usually presented by the well-known equation $W = \frac{1}{2} \varepsilon_0 E_0^2$ and it can be rewritten as $W = \frac{1}{2} \varepsilon_0 P_0^2$, since we have $\varepsilon = \mu = 1$ for the vacuum."

Should be: "The electromagnetic wave energy density for the init volume is usually presented by the well-known equation $W=\frac{1}{2}\varepsilon_0 E_0^2$ and it can be rewritten as $W\simeq \frac{1}{2}\varepsilon_0 D_0^2$, since we have $\varepsilon\simeq \mu\simeq 1$."

Instead sentence: "Presenting the single γ -quantum energy as $W = hv = \frac{1}{2}\varepsilon_0 E_0^2$, one can replace the quantity $E_0^2 = \frac{2hv}{\varepsilon_0}$ in Eq. (10) with $|\Delta W| = 16\beta Mghv$.

Should be: "Presenting the single γ -quantum energy density for unit volume as $W = h\nu = \frac{1}{2}\varepsilon_0 D_0^2$,

one can replace the quantity
$$D_0^2 = \frac{2hv}{\varepsilon_0}$$
 in Eq. (10) with $|\Delta W| = 20\beta Mghv$. "

Instead sentence "...gives a quite large γ -quantum energy, $W=7.09\times10^{15} \text{eV}$."

Should be: "...gives a quite large γ -quantum energy, $W=5.67\times10^{15} \text{eV}$."

Correct formulas (12)-(14) are:

$$\Delta mc_0^2 = 20\beta Mghv \tag{12}$$

$$\Delta m = \frac{20\beta Mghv}{c_0^2} = \frac{20GMghv}{c_0^6} \,. \tag{13}$$

$$\Delta W = hv = \frac{m_e c_0^6}{20GMg} \tag{14}$$

In abstract and conclusion: Instead value $W=1.32\times10^5$ eV, value - $W=1.06\times10^5$ eV.