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Abstract

We introduce novel types of self-trapped extended optical structures, which can be
generated in both self-focusing and self-defocusing nonlinear media in the form of two-
dimensional vortex lattices. We discuss a link of these novel objects with other types of
spatially localised self-trapped states, such as vortex solitons and ring-shaped rotating

clusters of solitons.
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Introduction

Wavefront dislocations of light beams are
associated with robust defects in the phase
distribution of the field. They appear as semi-
infinite lines, called edge dislocations, or as
point-like defects with a twisted phase,
resembling the structure of fluid vortices.
Because the phase has a singular value at the
dislocation core, the light intensity vanishes and
optical beam acquires a complex structure,
usually associated with a higher-order mode of
an optical beam, or an optical vortex. The study
of phase discontinuities in optics now emerges
as a separate discipline, the singular optics [1].
In nonlinear media, the singular beams
remain localised because of the self-trapping
mechanism that compensates beam diffraction,
and the embedded phase dislocation determines
a complex internal structure of the beam.
Furthermore, the nonlinear self-action may
result in a stationary propagation of such light
beams, with both intensity and phase pattern
remaining unchanged along the propagation
direction. In this case, the so-called spatial
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optical soliton is formed [2]. Examples of
higher-order spatial solitons in isotropic self-
focusing nonlinear media include multipole
vector solitons [3] with edge phase dislocations
and optical vortex solitons [4-6] (see also a
recent review [7] for a comprehensive list of
references in the topic of nonlinear singular
optics).

In this paper, we consider a generalization
of the concept of spatial vortex solitons to
infinitely extended systems, and introduce novel
types of two-dimensional nonlinear lattices with
a singular phase structure in isotropic nonlinear
media, the so-called vortex lattices. The interest
to nonlinear self-trapped periodic waves [8,9]
has recently been renewed in the context of
lattices  [10].
Nonlinear diffraction-free light patterns in the

optically  induced photonic
form of stable self-trapped periodic waves can
exist in many types of nonlinear systems, and
they provide a simple realization of nonlinear
photonic crystals. Such structures are flexible
because the lattice is modified and shaped by the
nonlinear medium; these flexible lattices extend
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the concept of optically induced photonic
gratings beyond the limit of weak material
nonlinearity. Moreover, nonlinear lattices offer
many novel possibilities for the study of
nonlinear effects in periodic systems, because
they can interact with localised signal beams
through the cross-phase modulation effect and
In this
context, the vortex lattices hold a potential to

form composite bound states [11].

provide additional means to control and
manipulate a signal beam through the mutual
guiding and exchange of field momenta.

In this paper, we first present a brief
overview of two fundamental objects, vortex
solitons and soliton clusters. We argue that a
natural generalization of these two concepts to
the case of infinitely extended states or
nonlinear lattices is a structure created by
periodically repeated arrays of soliton clusters
The nonlinear
should be

associated with a nontrivial phase pattern in the

extended into two directions.

lattices obtained in this way
form of a lattice of vortices. We demonstrate
that such kind of self-localised nonlinear states
exist, as periodic solutions of nonlinear wave
in both

defocusing nonlinear media.

equation, self-focusing and self-

Vortex solitons

We consider propagation of a paraxial laser
beam in an isotropic bulk nonlinear medium.
Since two-dimensional beams in a Kerr
nonlinear medium are known to undergo a
catastrophic self-focusing (collapse) instability,
we select a model with saturation of the

refractive index #,

n=mn,+en,

, 1
Y (1)

where ng is the linear refractive index of the
dielectric medium, 7, the nonlinear coefficient,
Iy, the characteristic saturation intensity of the
medium, and / the intensity of the propagating
light beam. Examples of saturable nonlinear
media include resonant rubidium vapours and
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photorefractive crystals under applied biasing
In the
nonlinear coefficient is proportional to the

electrostatic  filed. latter case, the

biasing filed and it changes its sign for a reverse
We reflect this by
introducing a coefficient & so that the

polarity of the bias.

nonlinearity is of a self-focusing type if ¢ = +1,
and it is self-defocusing for £=—1.

Propagation of paraxial beams with the
main wave vector in the direction z and slowly
varying complex envelope E(x,y;z) is governed
by a quasi-optical equation usually referred to as
the nonlinear Schrodinger equation (NLSE),
which we write here in the dimensionless form:

8E+8125 8E QE\)E 0. @)
0z Ox
where the potential F is given by a nonlinear
part of the refractive index (1) and, after

normalization, FQE‘Z)z‘E‘Z/(IHE‘z), so that
the intensity ‘E\z is measured now in units of

saturation intensity /.

Spatial solitons are the localised optical
beams, whose intensity does not change with
stationary ~ “nonlinear

of Eq.(2) can be found in a

propagation;  such
eigenmodes’’
generic form, E(x,y;z)=U(x,y)exp(ikz), with
U(x,y) and k& the

propagation constant. The latter indicates the

being the envelope
correction to the wave vector introduced by
nonlinearity; this correction depends on the light
intensity. Therefore, the family of stationary
solutions (solitons) is parameterised by £.
Optical vortices have been introduced as
the first example of stationary light beams with
a phase twisted around the centre [4], and their
structure can be represented as
U(x,y)=R(r)exp(imep). The field should
change periodically around the beam core, so
the phase twist should be proportional to 27,
the latter is
usually regarded as a topological charge of the

with an integer coefficient m;

phase dislocation. Because the phase in
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undetermined at the vortex centre, its intensity
vanishes and the beam possesses a characteristic
shape of a “doughnut mode” (see Fig. 1). Later,
it has been shown that higher-order spatial
solitons are subject of symmetry-breaking
instability, resulting in splitting of the initial
doughnut-mode structure into a number of
fundamental solitons. The number of splinters
and their dynamics are determined by the
topological charge of the phase dislocation and
the corresponding angular momentum [5] (see
[6,7] for an overview on optical vortex solitons).

Soliton clusters

An important step towards understanding of
higher-order self-trapped nonlinear beams has
been made in Refs. [8,9], that introduced
azimuthally ~modulated nonlinear localised
structures, the so-called “necklace” beams. It
has been shown that a combination of the edge-
type phase dislocations with m-out-of-phase
neighbouring peaks cannot produce stationary
but only slowly expanding “necklaces”. Such
stabilization is indeed possible for other cases
including the attractive interaction between
beams [10]. Another

approach to this problem is a combination of

several incoherent
screw dislocation in the origin of a ring-shaped
beam with edge dislocations within the necklace
[12,13]. The screw dislocation introduces a
centrifugal force to the ring that is also

Vortex

Intensity

Phase
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responsible for spiraling and mutual repulsion of
the splinters in the case of vortex break-up [5],
and the edge dislocations prevent noise-induced
instability of the ring. Because of nonzero
angular momentum in this case, the whole
structure rotates while the beam is propagating.
As a result, stabilization of ring-shaped multi-
hump beams requires a complex phase
characterised by a fractional spin [13,14].

The phase distribution necessary for the
formation of quasi-stationary higher-order self-
trapped optical beams has been suggested in
Ref. [15] by introducing the concept of soliton
of this

azimuthally modulated beam is regarded as a

cluster. In frame approach, the
bound state of interacting fundamental solitons.
Because of the phase-sensitive interaction, the
requirement of balance of the interaction forces
between the neighbouring solitons determines
the beam phase in the form of a staircase-like
screw dislocation. Fig. 1 allows one to compare
the vortex phase dislocation (left) with the phase
of a four-soliton cluster, having well-defined
n/2-steps or edge dislocations between the
solitons (right). It has been found [15] that the
radially stable dynamic bound state is formed if
these phase jumps, say 6, satisfy the condition
6 = 21 m/N, with N> 4m being the number of
solitons in the cluster.

Stability of the soliton clusters has been

studied numerically in different nonlinear

Cluster

Fig. 1. Structure of the beam
intensity and phase for an
optical vortex soliton (left) and
a cluster of four fundamental
solitons (right). In terms of
azimuthal coordinate ¢ = tan”'
y/x, the vortex phase is given
as a linear function, me, with
integer m, while the staircase-
like cluster phase is a
nonlinear function.
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media, including the cases of cubic saturable,
competing cubic self-focusing and quintic self-
defocusing, and competing quadratic and cubic
[15,16]. This
concept has been extended to higher dimensions,

self-defocusing nonlinearities

namely to the case of spatiotemporal solitons or
light bullets [17]. The common outcome of these
investigations is a numerically observed
robustness of the soliton clusters to random
noise and strong radial perturbations. In the
latter case, the pulsating states viewed as radial
excitations of the soliton molecule have been
observed. Nevertheless, similar to the vortex
solitons, the soliton clusters suffer from the
symmetry-breaking modulational instability, and
they are unstable with respect to azimuthal
perturbations. The remarkable feature of this
instability is that the number of splinters (the
fundamental solitons flying off the ring) is
determined mainly by the topological charge m
instead of the initial soliton number N, similar to

the vortex solitons [5,7].

Vortex lattices: periodic self-trapped
nonlinear singular waves

Nonlinear photonic structures created by two-
dimensional lattices of pixel-like solitons have
recently been demonstrated experimentally in
parametric processes [18] and in photorefractive
crystals with both coherent [19] and partially
incoherent [20] light. For the case of two-
dimensional lattices of in-phase solitons created
by the amplitude modulation, every pixel of the
lattice induces a waveguide, which can be
manipulated by an external steering beam
[19,21]. However, the spatial periodicity of
these lattices is limited by the attractive soliton
interaction that may lead to their strong
instability. In contrast, the recently suggested
two-dimensional lattices of out-of-phase solitons
are known to be robust in isotropic saturable
model [8], and have been also generated
experimentally in anisotropic photorefractive
crystal [9]. The phase profile of such self-
trapped waves resembles chessboard with the

Fig. 2. Self-trapped periodic
lattices of vortices in a
saturable nonlinear medium.
(a,b) —intensity  distribution
s/ for the periodic solutions in
high-saturation regime (the
peak intensity >36) for the
self-defocusing (e=-1,
k =-1.45) and self-focusing
(¢ = +1, k = 0.45) media,
respectively (notice that the
difference between two plots
is hardly visible).

(d,e) — corresponding nonline-
ar refractive index corrections
are mutually “inverted”. The
modes have practically
identical phase profiles shown
in (c); the top view is shown in
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(f). Families of solutions are
summarised in the diagrams
for the amplitude and power
of the elementary cell vs. the
propagation constant k, and
the two dots correspond to
the cases (a,d) and (b,e). The
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elementary cell contains four
vortices and is indicated in (f)
by a dashed square.
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lines of m-phase jumps between neighbouring
white and black sites.

Here we expand the concept of the periodic
self-trapped nonlinear modes and study complex
field patterns, carrying phase dislocations. In
linear media, such diffraction-free waves are
well known. They can be constructed as a
special superposition of two real modes, similar
to the structure of optical vortex with the phase
factor exp(ime). This can be presented as a
superposition of two Laguerre-Gaussian modes,
[cos(m@) + isin(m@)]. First, we identify two-
dimensional stationary periodic solutions of
Eq. (2) without the potential, i.e. at F' = 0. We
restrict our study to a square geometry, so that
the linear diffraction-free mode is given by

Ey, (x, Ys Z) = Acos(xd) x

3
x cos(yd) exp(—2id*z) )

with the period of the intensity distribution
T=7/d in both directions x and y and arbitrary
amplitude 4. From this solution, there appears a
bifurcation into the nonlinear regime; it has been
studied [8] for an
saturation and for a model with anisotropic

isotropic model with

photorefractive nonlinearity [9]. In the latter
case, the optically induced refractive index
depends on the orientation of the lattice with
respect to the crystal axis. Nonetheless, the
nonlinear wave has been found to be robust to
such anisotropic deformations and this is
experimentally observed [9].

A linear singular periodic wave could be
constructed as the superposition

E vortex

e (x, ys2) =
Afcos(xd)cos(yd) + isin(xd)sin(yd)}x, (4)
x exp(—2id*z)

because the mode (3) is degenerate with respect
to rotations and phase shift. Looking for the
stationary solutions to the nonlinear model (2),
we employ a relaxation numerical procedure
(similar to that used in [9]) with an initial trial
function being the linear solution given by
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Eq. (4). We reveal the existence of self-trapped
vortex lattices in saturable media with both self-
defocusing (& = —1) and self-focusing (& = +1)
nonlinearities. The examples of these solutions
and the soliton-family characteristics are shown
in Fig. 2.

Here we stress several properties of these
lattices. First, it is well known that the optical
vortices in self-defocusing media can only exist
on an infinite background and form dark spots;
they are usually referred to as dark vortex
solitons [6]. In contrast, in self-focusing media,
the vortex is spatially localised in the form of a
bright ring, or a bright vortex soliton [7].
Remarkably, this difference is not important for
the periodic lattices of vortices with the same
symmetry, as is seen from Fig. 2. Moreover, we
find that the intensity and phase of the lattices
are very close to the linear solution (4), with the
main difference that the amplitude A4 is now
dependent upon the wave vector k.

Furthermore, we examine the phase
structure shown in Fig. 2 (c and f) in more
details and find that it reflects the main features
of the soliton cluster (cf. Fig. 1, right). Indeed,
instead of a linear phase growth around the core
of each dislocation, as one would expect for a
single vortex soliton, the phase exhibits jumps
between the intensity maxima. These jumps are
analogous to the (soft) edge-type dislocations,
and they define and support a multi-humped
structure of the soliton cluster [15,16]. Really,
the periodic structure with a square geometry in
Fig.2 involves a four-fold symmetry of the
phase modulation, similar to the four-soliton
cluster in Fig. 1. At the same time, single-
charged clusters can be constructed with any
number of solitons >4, e.g., five solitons [15],
while there is no five-fold symmetry in the
periodic  structures.  Similar  symmetry
considerations show that the existence of the
lattices with higher dislocations, e.g., with
double-charged vortices or with a combination
of dislocations of different orders (super-
lattices), is a highly nontrivial issue. Moreover,
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the stability properties of these structures should
be significantly different in (de-) focusing
nonlinear media.

Finally, we note that self-trapped nonlinear
waves propagate in the potential (the refractive
index profile) they induce, and they are
eigenmodes of this potential. We plot the
optically induced refractive index distribution in
Fig. 2 (d and e) for both types of the modes with
&= =1 and observe that, despite of the fact that
the two potentials are mutually inverted, the
intensity profiles of their eigenmodes are
practically identical. We choose the high-
saturation regime to stress a difference between
the two potentials. These plots also show a
distinction of photonic structures optically-
induced by vortex lattices. Namely, fine features
of the refractive index landscape, such as the
spikes in Fig. 2d, are determined by the vortex
core size and, therefore, can be small. One may
search for the analogues with, e.g., an array of
nanotubes, presented in Ref. [22] as “antennas

for visible light”.

Conclusions

We have predicted the novel types of two-

dimensional  optically induced nonlinear
photonic lattices associated with a nontrivial
phase pattern of self-localised optical beams in
nonlinear media. Such vortex lattices provide a
nontrivial generalization of the concept of
spatial optical solitons. In the self-focusing
nonlinear media, they can be described as an

infinite lattice of soliton clusters.
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