Dispersion of Refractive Indices in Cs₂CdBr₄ and Cs₂HgBr₄ Crystals ¹T.Dudok, ¹I.Martynyuk-Lototska, ¹I.Trach, ¹G.Romanyuk, ²M.Romanyuk and ¹R.Vlokh ¹Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine, e-mail: vlokh@ifo.lviv.ua Received: 18.02.2005 #### **Abstract** Dispersion of the refractive indices in Cs₂CdBr₄ and Cs₂HgBr₄ crystals has been experimentally obtained for the visible spectral range. The dispersion curves have been extrapolated towards the UV and IR ranges on the basis of single-term Sellmeier formula. PACS: 78.20.Ci Key words: refractive indices, Sellmeier formula, Cs₂CdBr₄ and Cs₂HgBr₄ crystals #### Introduction As it has been shown in our previous reports [1,2], Cs₂CdBr₄ and Cs₂HgBr₄ crystals have high values of acoustooptic figures of merit: $M_2 = 126.5 \times 10^{-15} \text{s}^3/\text{kg}$ for Cs₂HgBr₄ M_2 =366.9×10⁻¹⁵s³/kg for Cs₂CdBr₄. These large M_2 coefficients peculiar for the above crystals are associated with relatively low magnitudes of the transverse acoustic waves velocities $(v_4=804.9 \text{m/s} \text{ for } \text{Cs}_2\text{HgBr}_4 \text{ and } v_4=843 \text{m/s} \text{ for }$ Cs₂CdBr₄ [3]). We have confirmed the high value of acoustooptic diffraction efficiency experimentally. For example, we have obtained η=27.8% for Cs₂CdBr₄ at the driving electric signal power P_{el} =12W, 16.6% for Cs₂HgBr₄ at $P_{el}=10W$, as well as 40% for Cs₂HgCl₄ at P_{el} =4W [2]. The crystals are transparent in a wide enough spectral range (e.g., 0.27-25µm in case of Cs₂HgBr₄ and 0.35-25µm for Cs₂CdBr₄ [2]. It means that the mentioned crystals can be used for acoustooptic operating of laser radiation in a wide spectral range and, in particular, the infrared (IR) range that covers the telecommunication windows. Unfortunately, the dispersion of the refractive indices and the optical anisotropy have been studied earlier only for Cs₂HgCl₄ crystals [4], although these optical parameters are very important for further consideration of the acoustooptic interaction. Hence, the present paper is devoted to experimental studies for the refraction dispersion in Cs₂CdBr₄ and Cs₂HgBr₄ crystals. ## **Experimental** The refractive indices dispersion has been studied by the index-matching method. Alphamonobromine naphthalene with kerosene or iodine methene have been used as indexmatching liquids. The crystal plates with the orientation parallel to the principal crystallographic planes and the average thickness of few milimeters have been prepared from the bulk single crystals grown with the Bridgeman method. The Cs₂CdBr₄ and Cs₂HgBr₄ crystals belong to the point group of symmetry mmm, so the two plates with different principal orientations have been needed for determining all the three refractive indices for each compound. The accuracy of determination of the refractive indices has not been worse than 10^{-3} . ²National University "Lvivska Politekhnika", 12 Bandera St., 79640 Lviv, Ukraine #### **Results and Discussion** The dispersion of the refraction indices for Cs₂CdBr₄ and Cs₂HgBr₄ crystals experimentally obtained in the visible spectral range is shown in Fig. 1. As one can see, the dispersion exhibits a normal character. Using these data it is possible to make extrapolation of the dispersion curves towards the ultraviolet (UV) and the IR spectral ranges, while basing on the single-term Sellmeier formula $$n_i^2 = 1 + \frac{A_i \lambda^2}{\lambda^2 - \lambda_{0i}^2},$$ (1) where λ is the light wavelength in vacuum, λ_{0i} the wavelength corresponding to the absorption band and A_i the fitting coefficient. On the basis of Eq. (1) and the refractive indices dispersion obtained experimentally, one can determine the coefficients A_i , and the absorption band wavelength λ_{0i} which are equal to A_a =1.649, λ_{0a} =149nm; A_b =1.614, λ_{0b} =155nm; A_c =1.605, λ_{0c} =154nm for Cs₂CdBr₄ and A_a =1.573, λ_{0a} =161nm; A_b =1.619, λ_{0b} =181nm; A_c =1.306, λ_{0c} =154nm for Cs₂HgBr₄ crystals. Thus approximated spectral dependences of the refractive indices are shown in Fig.2, 3. Of **Fig. 1.** Dispersion of refractive indices for Cs₂CdBr₄ (a) and Cs₂HgBr₄ (b) crystals in the visible spectral range. **Fig. 2.** Dispersion of refractive indices for Cs₂CdBr₄ crystal in the wide spectral range obtained using the Sellmeier formula approximation. **Fig. 3.** Dispersion of refractive indices for Cs₂HgBr₄ crystal in the wide spectral range obtained using the Sellmeier formula approximation. course, a number of the oscillators and their characteristic wavelengths is larger than one. As a result, the approximation of the refractive indices on the basis of single-term Sellmeier formula and without the wavelengths λ_{ok} of the oscillators experimentally defined for different eigen-polarizations of light has rather qualitative character. ## **Conclusions** The dispersion of the refractive indices of Cs₂CdBr₄ and Cs₂HgBr₄ crystals has been experimentally obtained for the visible spectral range. The dispersion curves have been fitted to the single-term Sellmeier formula and thus extrapolated towards the UV and IR spectral ranges. # Acknowledgement The authors are thankful to Ministry of Education and Science of Ukraine (the Project 0103U000703) for financial support of the present study. ### References - Krupych O., Girnyk I, Trach I., Martynyuk-Lototska I., Vlokh R., Vlokh O. Ukr. J. Phys. Opt. 5 (2004) 8. - 2. 2.Martynyuk-Lototska I., Dudok T., Trach I., Vlokh R. Ukr. J. Phys. Opt. **5** (2004) 77. - 3. Kityk A.V., Zadorozhna A.V., Shchur Ya.I., Martynyuk-Lototska I.Yu., Burak Ya., Vlokh O.G. Aust. J. Phys. **51** (1998) 943. - 4. 4.Kaidan M.V., Zadorozhna A.V., Andrushchak A.S., Kityk A.V. Appl. Opt. 41 (2002) 5241.